
REV Control System

Introduction

The REV Control System is an affordable robotics control platform providing the interfaces required for
building robots. These devices are most commonly used within the FIRST Tech Challenge (FTC), FIRST
Global Challenge (FGC), and in the classroom for educational purposes.

How to use this documentation?

This documentation is intended as the place to answer any questions related to the REV Robotics Control
System, used in the FIRST Tech Challenge and FIRST Global Challenge.

Looking to get an idea of how to use the system before your Control Hub arrives? Reading through
each section will help, but we specifically recommend the guides on getting started with the Control Hub
and the programming language options section.
Have a specific question? Feel free to head straight to it using the navigation bar to the left. Each
section is grouped with other topics that are similar.
Having trouble finding what you are looking for? Try the search bar in the upper right or read the section
descriptions below to find the best fit.

Getting started building robots can be an intimidating process. The following documentation is here to make
getting started a bit easier. There are a number of examples to get started with the Control System and we
are committed to adding content to make it more accessible for people to use REV.

If there is a question that is not answered by this space, send our support team an email;
support@revrobotics.com. We are happy to help point you in the right direction.

What is in each section?

 Control System Overview

 This section contains information regarding all of the major mechanical specifications of the REV Control
Hub and Expansion Hub. These sections include port pinout information, protection features, and the types
of cables used with the devices.

Getting Started

Take the Control Hub or Expansion Hub from out of the box through generating the first configuration file.
This includes the process for changing your Control Hub's Name and Password as well as pairing to your

Driver Station. Also includes information on ways to add additional motors to the Control System through
adding a SPARKmini Motor Controller or an Expansion Hub.

Managing the Control System

This section covers how the information needed to keep your Control System up to date and how to
troubleshoot your Control System if issues arise.

Programming

From just getting started by writing your first Op Mode to working with closed loop control, this section
covers the information needed to start programming.

Sensors

Sensors are often vital for robots to gather information about the world around them. Use this section to find
how to use REV sensors and information on the different sensor types.

Control System Overview

Control Hub Basics

The REV Robotics Control Hub (REV-31-1595) is an affordable all in one educational robotics controller that
provides the interfaces required for building robots, as well as other mechatronics, with multiple
programming language options. The Control Hub was designed and built as an easy to use, dependable, and
durable device for use in classroom and the competition. It features an Android operating system, and a
mature software package designed for both basic and advanced use cases. When the Control Hub software
is updated with performance enhancements and features, the controller can receive a "field upgrade,"
through an update process that is fast and simple.

The Control Hub is an approved device for use in FIRST® Global and FIRST Tech Challenge.

Physical Dimensions
143mm X 103mm X 29.5 mm
Mounting holes on a 16mm spacing

Input Voltage
12V nominal (8-15V DC)

Processors
RK3328 Quad-core ARM® Cortex-A53

Texas Instruments ARM® Cortex-M4

3.3V Ports
8x digital I/O: 1A source max

4x I2C 100kHz/400kHz busses: 500mA source max

4x 12-bit analog inputs: 500mA source max

4x quadrature encoder inputs: 500mA source max

5V Ports
+5V Power: 2A source max

https://www.revrobotics.com/rev-31-1595/

Servos: 2A source maximum per pair (0-1, 2-3, 4-5)
USB 2.0: 1.5A source max
USB 3.0: 1.5A source max

PORT
LABEL

QTY CONNECTOR DESCRIPTION

Battery 2 XT30 Connect one 12V NiMh battery, add an Expansion Hub with second port

Motor 4
JST VH, 2-

pin
Motor power output

Encoder 4
JST PH, 4-

pin
Quadrature encoder input

Servo 6 0.1” Header Extended range 5V servo output (500-2500ms)

+5V
Power

2 0.1” Header Auxiliary device 5V/2A

Analog 4
JST PH, 4-

pin
Analog input 0-5.0V measurement range with two channels per
connector. 3.3V provided on the connector power pin.

Digital 8
JST PH, 4-

pin
Digital Input/Output with two channels per connector

I2C 4
JST PH, 4-

pin
Four separate I2C busses, 100kHz/400kHz bus speed

RS485 2
JST PH, 3-

pin
Use this serial communication port to add an Expansion Hub

UART 2
JST PH, 3-

pin
Debugging only

USB C 1 USB C Connect directly to the Control Hub via PC, USB 2.0

USB 2.0 1 USB A Connect USB cameras and other USB peripherals to the Control Hub

USB 3.0 1 USB A Connect USB cameras and other USB peripherals to the Control Hub

HDMI 1 HDMI A Supports 4k @ 60Hz

Expansion Hub Basics

The REV Robotics Expansion Hub (REV-31-1153) is a low-cost education device that can communicate with
any computer (Commonly the REV Robotics Control Hub or an Android Phone) to provide the interfaces
required for building robots and other mechatronics. The Expansion Hub was purposed built to stand up to
the rigors of the classroom and competition field. It features a mature firmware designed for basic and
advanced use cases with the ability to be field upgraded in the future.

The IO ports of the Expansion Hub are identical in specification to the Control Hub. Within this
documentation, many sections may refer to the Control Hub, but the connections are the same for the
Expansion Hub.

The REV Robotics Expansion Hub is an approved device for use in the FIRST Tech Challenge and FIRST
Global.

Physical Dimensions
143mm X 103mm X 29.5 mm
Mounting holes on a 16mm spacing

Input Voltage
12V nominal (8-15V DC)

Processors
Texas Instruments ARM® Cortex-M4

3.3V Ports
8x Digital I/O: 1A source max

4x I2C 100kHz/400kHz Busses: 500mA source max

4x 12-bit Analog Inputs: 500mA source max

4x Quadrature Encoder Inputs: 500mA source max

https://www.revrobotics.com/rev-31-1153/

5V Ports
+5V Power: 2A source max
Servos: 2A source maximum per pair (0-1, 2-3, 4-5)

PORT LABEL QTY CONNECTOR DESCRIPTION

Battery 2 XT30
Connect one 12V NiMh battery, add an Expansion Hub with second
port

Motor 4
JST VH, 2-

pin
Motor power output

Encoder 4
JST PH, 4-

pin
Quadrature encoder input

Servo 6 0.1” Header Extended range 5V servo output (500-2500ms)

5V Aux
Power

2 0.1” Header Auxiliary device 5V/2A

Analog 4
JST PH, 4-

pin
Analog input 0-3.3V with two channels per connector

Digital 8
JST PH, 4-

pin
Digital Input/Output with two channels per connector

I2C 4
JST PH, 4-

pin
Four separate I2C busses, 100kHz/400kHz bus speed

RS485 2
JST PH, 3-

pin
Serial communication port to add a Hub (Control or Expansion)

UART 2
JST PH, 3-

pin
Debugging only

MINI USB 1 USB Mini-B Connect directly to the Robot Controller Android device or PC

Port Pinouts

Protection Features

The Control (REV-31-1595) and Expansion Hub (REV-31-1153) were designed with a number of protection
features built into the device. These include the following:

Reverse battery input protection
Electrostatic discharge (ESD) protection on all connections
Over-current protection
 on all power buses

Digital I/O bus
I2C bus
Analog bus
USB
Servo bus per pair (0-1, 2-3, 4-5)
Encoder bus

Over-current monitoring for individual Motor Channels
Keyed and locking connectors
Fail-safe mode at communication loss

https://www.revrobotics.com/rev-31-1595/
https://www.revrobotics.com/rev-31-1153/

Cables and Connectors

The REV Robotics Control Hub (REV-31-1595) connector selection provides a robust high-density solution for
the user. All connectors are keyed and locking except for the Servo, 5V auxiliary power, HDMI , and USB
ports.

XT-30 - Power Cable
/control-system-overview/cables-and-
connectors/xt-30-power-cable

JST VH - Motor Power
/control-system-overview/cables-and-
connectors/jst-vh-motor-power

JST PH - Sensors and RS485
/control-system-overview/cables-and-
connectors/jst-ph-sensors-and-rs485

https://www.revrobotics.com/rev-31-1595/

XT-30 - Power Cable

The XT30 connector is used for connecting a battery and powering a Control/Expansion Hub. Each
Control/Expansion Hub has both a Male and Female XT30 connector, as determined from the metal
contacts, not the plastic housing. While either connector can provide power to the hub, it is the convention to
use the male connector for "power in" to the hub, and to use the female connector for "power out" to a
connected secondary device, like an Expansion Hub or XT30 Power Distribution Block, from the single
battery source.
 Passing power from one device to another in a chain is often called "daisy-chaining."

Most teams will want to use pre-made cables which can be conveniently sourced from the REV Robotics
website. However, teams can also make their own cables. These connectors are solder-cup style, do not
require any crimping tools, and are available from various online vendors. Because these connectors are an
open design, they are manufactured by a variety of sources and quality may vary. AMASS branded
connectors are recommended, and are what is used on REV products, but there are many other quality
vendors available.

Table 1: Premade XT-30 Cables and Accessories

Cable Type Length REV Robotics Part Number

XT-30 Male - XT-30 Female 30 cm REV-31-1392

XT-30 Male - XT-30 Female 50 cm REV-31-1394

XT-30 Female - Tamiya 8 cm REV-31-1382

XT-30 Female - Anderson Power Pole Style 8 cm REV-31-1385

Power Switch Cable (XT30 Male – XT30 Female) 12 cm REV-31-1387

XT30 Connector Pack – 5 Pairs - REV-31-1399

https://www.revrobotics.com/xt30-extension-cable-2-pack/
https://www.revrobotics.com/xt30-extension-cable-2-pack/
https://www.revrobotics.com/rev-31-1382/
https://www.revrobotics.com/rev-31-1385/
https://www.revrobotics.com/rev-31-1387/
https://www.revrobotics.com/rev-31-1399/

JST VH - Motor Power

Figure 1: How to Use a JST VH Cable

Motor Power connections on the Control Hub (REV-31-1595) use the JST VH style connector. This
connector is keyed and locking with a small latch, seen below, which must be depressed to release the cable.

REV Robotics recommends, in most cases, that teams use pre-made cables because crimp quality is better
when made using industrial tooling. These cables can be purchased directly from the REV Robotics website
or through other online vendors.

Premade JST VH Cables and Accessories

Cable/Accessory Pins Length REV Robotics Part Number

JST VH 2-Pin Motor Cable 2 pins 30 cm REV-31-1412

JST VH 2-Pin Motor Cable 2 pins 50 cm REV-31-1413

JST VH 2-Pin Motor Cable 2 pins 100 cm REV-31-1526

Anderson to JST VH Cable 2 pins 12 cm REV-31-1381

JST VH 2-pin Joiner Board 2 pins - REV-31-1429

For teams that want to try crimping their own cables, or to find more information about the connectors, Table
3 lists the appropriate part numbers.

Connector Specifications

10A Continuous Current (16AWG)
3.96mm Pitch
Accepts 22-16AWG Wire

JST VH Connector Part Number Reference

https://www.revrobotics.com/rev-31-1595/
https://www.revrobotics.com/jst-vh-2-pin-motor-cable-4-pack/
https://www.revrobotics.com/jst-vh-2-pin-motor-cable-4-pack/
https://www.revrobotics.com/jst-vh-2-pin-motor-cable-4-pack/
https://www.revrobotics.com/rev-31-1381/
https://www.revrobotics.com/rev-31-1429/

Manufacturer Part Number DigiKey Part Number

Contact, JST VH, 18-22AWG SVH-21T-P1.1 455-1133-1-ND

Contact, JST VH, 16-20AWG SVH-41T-P1.1 455-1319-1-ND

Housing, JST VH, 2-pin VHR-2N 455-1183-ND

Header, JST VH, 2-pin, Top Entry B2P-VH 455-1639-ND

Header, JST VH, 2-pin, Side Entry B2PS-VH 455-1648-ND

https://www.digikey.com/product-detail/en/jst-sales-america-inc/SVH-21T-P1.1/455-1133-1-ND/527367
https://www.digikey.com/product-detail/en/jst-sales-america-inc/SVH-41T-P1.1/455-1319-1-ND/608888
https://www.digikey.com/product-detail/en/jst-sales-america-inc/VHR-2N/455-1183-ND/608624
https://www.digikey.com/product-detail/en/jst-sales-america-inc/B2P-VH(LF)(SN)/455-1639-ND/926547
https://www.digikey.com/product-detail/en/jst-sales-america-inc/B2PS-VH(LF)(SN)/455-1648-ND/926555

JST PH - Sensors and RS485

The JST PH style connector is used for motor encoder, analog, digital, I2C, RS485, and UART connections on
the Control Hub and Expansion Hub. These are all 4-pin connections except for the RS485 and UART which
are 3 pin. The connectors are keyed (they only insert in one orientation) and are friction locking. Below the
keying feature aligned with the cable is shown.

REV Robotics recommends in most cases that teams use pre-made cables because the quality of the crimp
is better when made using industrial tooling. These cables can be bought directly from the REV Robotics
Website or through other online vendors.

Premade 4-pin JST PH Cables

Cable/Accessory Pins Length REV Robotics Part Number

JST PH 4-Pin Sensor Cable 4 30 cm REV-31-1407

JST PH 4-Pin Sensor Cable 4 50 cm REV-31-1408

JST PH 4-Pin Sensor Cable 4 100 cm REV-31-1409

JST PH 4-pin Joiner Board 4 REV-31-1388

Premade 3-pin JST PH Cables

Cable Pins Length REV Robotics Part Number

JST PH 3-pin Communication Cable 3 30 cm REV-31-1417

JST PH 3-pin Communication Cable 3 50 cm REV-31-1418

JST PH 3-pin Communication Cable 3 100 cm REV-31-1565

https://www.revrobotics.com/jst-ph-4-pin-sensor-cable-4-pack/
https://www.revrobotics.com/jst-ph-4-pin-sensor-cable-4-pack/
https://www.revrobotics.com/jst-ph-4-pin-sensor-cable-4-pack/
https://www.revrobotics.com/rev-31-1388/
https://www.revrobotics.com/jst-ph-3-pin-communication-cable-2-pack/
https://www.revrobotics.com/jst-ph-3-pin-communication-cable-2-pack/
https://www.revrobotics.com/jst-ph-3-pin-communication-cable-2-pack/

For teams that want to try crimping their own cables, or to find more information about the connectors, the
table below lists the appropriate part numbers.

Connector Specifications

2A continuous current (24AWG)
2.0mm pitch
Accepts 32-24AWG wire

JST PH Connector Part Number Reference

Connector Parts Manufacturer Part Number DigiKey Part Number

Contact, JST PH, 30-24AWG SPH-002T-P0.5S 455-1127-1-ND

Contact, JST PH, 28-24AWG SPH-002T-P0.5L 455-2148-1-ND

Housing, JST PH, 4-pin PHR-4 455-1164-ND

Header, JST PH, 4-pin, Top Entry B4B-PH-K-S 455-1706-ND

Header, JST PH, 4-pin, Side Entry S4B-PH-K-S 455-1721-ND

Housing, JST PH, 3-pin PHR-3 455-1126-ND

Header, JST PH, 3-pin, Top Entry B3B-PH-K-S 455-1705-ND

Header, JST PH, 3-pin, Side Entry S3B-PH-K-S 455-1720-ND

https://www.digikey.com/product-detail/en/jst-sales-america-inc/SPH-002T-P0.5S/455-1127-1-ND/527358
https://www.digikey.com/product-detail/en/jst-sales-america-inc/SPH-002T-P0.5L/455-2148-1-ND/1634657
https://www.digikey.com/product-detail/en/jst-sales-america-inc/PHR-4/455-1164-ND/608606
https://www.digikey.com/product-detail/en/jst-sales-america-inc/B4B-PH-K-S(LF)(SN)/455-1706-ND/926613
https://www.digikey.com/product-detail/en/jst-sales-america-inc/S4B-PH-K-S(LF)(SN)/455-1721-ND/926628
https://www.digikey.com/product-detail/en/jst-sales-america-inc/PHR-3/455-1126-ND/527357
https://www.digikey.com/product-detail/en/jst-sales-america-inc/B3B-PH-K-S(LF)(SN)/455-1705-ND/926612
https://www.digikey.com/product-detail/en/jst-sales-america-inc/S3B-PH-K-S(LF)(SN)/455-1720-ND/926627

Dimensions and Important Component Locations

IMU Location

When using the Control Hub (REV-31-1595) or Expansion Hub (REV-31-1153) please note the location of the
IMU in the graphic below. The Hub’s orientation may impact the values received from the embedded IMU.

https://www.revrobotics.com/rev-31-1595/
https://www.revrobotics.com/rev-31-1153/

WiFi Radio Location

The Control Hub has an embedded WiFi radio for wireless communication. The antenna is located towards
the top of the Control Hub itself. The graphic below shows the location of antenna.

DO NOT put a battery or other WiFi blocking object on top of the Control Hub. This can lead to
higher ping times for communication between the Control Hub and the Driver Station.

Getting Started

Control Hub

After receiving the Control Hub it is advised to unbox the device, power the Control Hub on, and start the
configuration process. Below are the required materials to run through the initial bring up of the Control Hub
and links to the different steps of the process.

Required Materials

Control Hub (REV-31-1595)
12v Slim Battery (REV-31-1302)
Properly Configured Driver Station (DS)
USB Game Pad (REV-39-1647)
USB A Female to Micro USB (REV-31-1426)

Optional Additional Materials needed to Connect an Expansion Hub:

Expansion Hub (REV-31-1153)
XT30 Extension Cable (REV-31-1392, included with Expansion Hub)
JST PH 3-pin Communication Cable (REV-31-1417, included with Expansion Hub)

https://www.revrobotics.com/rev-31-1595/
https://www.revrobotics.com/rev-31-1302/
https://github.com/FIRST-Tech-Challenge/SKYSTONE/wiki/Configuring-Your-Android-Devices
https://www.revrobotics.com/rev-39-1647/
https://www.revrobotics.com/rev-31-1426/
https://www.revrobotics.com/rev-31-1153/
https://www.revrobotics.com/xt30-extension-cable-2-pack/
https://www.revrobotics.com/jst-ph-3-pin-communication-cable-2-pack/

Connect to the Robot Control Console

In order to manage the Control Hub (REV-31-1595) or programming using the onboard programming
languages a computer or other WiFi enabled device will need to connect to the Control Hub's Robot Control
Console.The Robot Control Console is a local network created by the Control Hub to program and manage
the device.

This example assumes the user uses Windows 10 as their operating system. If you are not using
a Windows 10, the procedure to connect to the network will differ. Refer to your device’s
documentation for details on how to connect to a WiFi network.

By default, the Control Hub has a name that begins with the phrase "FTC-" or "FIRST-" followed by four
characters that are assigned randomly. The default password for the network is "password". If either of these
is forgotten, follow the procedure to reset the WiFi Network.

WiFi Connection Procedure

With the Control Hub powered, select the WiFi Network icon in the lower right corner of the desktop.
Look for the WiFi that matches the naming protocol of the device.

To ensure you are able to locate the correct device, it is recommended that you first connect in a
location without other active Control Hubs or significant WiFi connections.

Once you have found the target network in the list, click on it to select it then press connect.
Provide the network password (in this example “password”) and press “Next” to continue.

Passwords are case sensitive. Make sure that your spelling and capitalization matches the
original spelling and capitalization for the password.

Once a wireless connection is established, the status is displayed in the wireless settings for the
Windows device.

When connected to the Control Hub, the Windows Device will not have access to the Internet. It
only has direct access to the Control Hub.

Open a web browser (Chrome, Firefox, Internet Explorer) and navigate to "192.168.43.1:8080" through
the address bar.

https://www.revrobotics.com/rev-31-1595/

From the Robot Control Console users can change the Control Hub name, update the password, upgrade the
operating system and firmware, as well as program the device. It is strongly recommended that you go
through all steps above before you begin programming.

Changing Control Hub Name

You can change the name of a Control Hub (REV-31-1595) using a device connect to the Control Hub's WiFi
network and using a web browser to navigate to the Robot Controller Console.

Steps to Change the Control Hub Name

Verify that connection to the Robot Control Console of the Control Hub. The Robot Controller Connection
Info page will be visible when navigating to address "192.168.43.1:8080"

Click on the Manage link towards the top of the Robot Controller Connection Info page to navigate to the
Manage page.

Change the name in the "Robot Controller Name" field and click on the Change Name button to change
the Control Hub's name.

https://www.revrobotics.com/rev-31-1595/

After pressing the Change Name button, a dialog box will appear indicating that the name has been
changed. You will need to reconnect to the wireless network and refresh the current page.

Changing Control Hub Password

You can change the password of a Control Hub (REV-31-1595) using a device connect to the Control Hub's
WiFi network and using a web browser to navigate to the Robot Controller Console. By default, the Control
Hub has its password set to "password" at the factory. It is a good idea to change the password from its
default value before you begin using your Control Hub.

Steps to Change the Control Hub Password

Verify that you are connected to the Robot Control Console of the correct Control Hub. The Robot
Controller Connection Info page will be visible when navigating to address "192.168.43.1:8080"

Click on the Manage link towards the top of the Robot Controller Connection Info page to navigate to the
Manage page.

https://www.revrobotics.com/rev-31-1595/

On the Manage page of the Control Hub Robot Controller Console, specify your new password and then
confirm this new password in the Access Point Password section of the page. Press the Change
Password to change the password.

After you press the Change Password button, a dialog box will appear, indicating that the password has
been changed. You will need to reconnect to the wireless network using the new password and refresh
the current page.

Driver Station Pairing to Control Hub

When you first receive your Control Hub (REV-31-1595) , you will have to pair (link) your Driver Station
(Android Device) to your Control Hub. This procedure only needs to be performed once for each set of
hardware. If you replace your Driver Station or Control Hub, this procedure will need to be repeated. The
steps below assume the FTC Driver Station Application or FIRST Global Driver Station Application are
installed on your Android device.

Pairing the Driver Station with the Control Hub

Power on the Control Hub by plugging the 12V Slim Battery
into the XT30 connector labeled “BATTERY” on the Control
Hub. You may also choose to include a switch between the
Battery and Control Hub, if you prefer.

The Control Hub is ready to pair with the Driver Station when
the LED turns green. Note: the light blinks blue every ~5
seconds to indicate that the Control Hub is healthy.

Power on your Android Device by holding down the power
button.

https://www.revrobotics.com/rev-31-1595/

Open the Driver Station application from the HOME Screen.

On the Driver Station page, open the menu from the top right
corner, then select “Settings”.

Select, “Pairing Method”

Select, “Control Hub”

Select, “Pair with Robot Controller”.

Select “Wifi Settings”

Select the name of the Wifi network generated by your
Control Hub. The default SSID name starts with either
“FIRST-“ or “FTC-“.

Enter the password to the Wifi network in the password field.
This defaults to “password”. Press “CONNECT”.

After pressing connect, press the back arrow at the bottom
of the display until you return to the main driver station
screen.

After a couple of seconds, the Driver Station page will
indicate the network name, a ping time, and battery voltage.

Your Driver Station is now paired with your Control Hub!

Changing WiFi Channel

The Control Hub (REV-31-1595) can utilize either the 2.4 GHz or 5 GHz WiFi band. By default the Control Hub
is set to a channel on the 2.4 GHz band. REV Robotics advises that during competition teams utilize a 5 GHz
channel for robot communication. Consult the table below for Driver Station devices that can operate on the
5 GHz band.

Phone WiFi Band

Moto G (2nd generation) 2.4 GHz (Single Band)

Moto G (3rd generation) 2.4 GHz (Single Band)

Moto G (4th generation) 2.4 GHz (Single Band)

Moto G5 2.4 GHz & 5 GHz (Dual Band)

Moto G5 Plus 2.4 GHz & 5 GHz (Dual Band)

Moto E4 2.4 GHz & 5 GHz (Dual Band)

Moto E5 2.4 GHz & 5 GHz (Dual Band)

Moto E5 Play 2.4 GHz & 5 GHz (Dual Band)

Steps to changing the WiFi Channel on your Robot

Step Image

https://www.revrobotics.com/rev-31-1595/

Press the triple dots in the upper right. Then select “Program
& Manage” from the Driver Station Menu.

Select the menu button in the top right. Then select
“Manage”.

Select the drop down menu under “Access Point Channel”.

Select a 5 GHz channel noted in the () next to the channel
number. Then select the “Change Channel” button next to
the drop down.

At the main screen, confirm the channel is changed under
“Network”.

Wiring Diagram

Before configuring your Control Hub, devices must be connected to the Control Hub. Below is a sample
wiring diagram to show a sample of actuators and sensors usable with the Control Hub.

Configuration

Every device connected to the Control Hub (REV-31-1595) will need to be added to the Robot Configuration
file before you can use the device in your program. The Robot Configuration will allow you to give your
sensors and actuators meaningful names that you can reference while programming.

For this example, we will configure a simple two motor robot drivetrain.

Step Image

https://www.revrobotics.com/rev-31-1595/

Select the menu on either the Driver Station or Robot
Controller. Then select “Configure Robot”.

Select “New” in the top left hand corner.

Select “Expansion Hub Portal 1” (embedded).

Select “Expansion Hub 1”.

Select “Motors”.

Select the Drop Down menu for “Port 0” then select the
motor type attached to the port. In the case of the Minibot in
Figure 4, select the “Rev Robotics Core Hex Motor”.

Press “Enter motor name here” and name the motor
“left_drive”.
This is the name that you will use when you are
programming your robot to control this motor. Always use
descriptive names so that you can remember what a device
does when you are programming.

Repeat the process for “Port 1” and name the motor
“right_drive”.

Press “Done” once to go back to the list of device ports and
then select I2C Bus 0.

Add the built-in REV Expansion Hub IMU. Name it “imu”

Press the “Done” button (at the top left corner of the page) 3
times.

Press “Save”.

Enter “miniBot” as your configuration name, then select
“OK”.

You now have an active configuration called “miniBot”.
Press the Android back button to return to the Driver Station
page.

Expansion Hub

After receiving the Expansion Hub it is advised to unbox the device, power the Expansion Hub on, and start
the configuration process. Below are the required materials to run through the initial bring up of the
Expansion Hub and links to the different steps of the process.

Required Materials

Expansion Hub (REV-31-1153)
12v Slim Battery (REV-31-1302)
Properly Configured Driver Station (DS)
Properly Configured Robot Controller (RC)
USB Game Pad (REV-39-1647)
USB A Female to Micro USB (REV-31-1426)

Optional Additional Materials needed to Connect an Expansion Hub:

Expansion Hub (REV-31-1153)
XT30 Extension Cable (REV-31-1392)
JST PH 3-pin Communication Cable (REV-31-1417)

https://www.revrobotics.com/rev-31-1153/
https://www.revrobotics.com/rev-31-1302/
https://github.com/FIRST-Tech-Challenge/SKYSTONE/wiki/Configuring-Your-Android-Devices
https://github.com/FIRST-Tech-Challenge/SKYSTONE/wiki/Configuring-Your-Android-Devices
https://www.revrobotics.com/rev-39-1647/
https://www.revrobotics.com/rev-31-1426/
https://www.revrobotics.com/rev-31-1153/
https://www.revrobotics.com/xt30-extension-cable-2-pack/
https://www.revrobotics.com/jst-ph-3-pin-communication-cable-2-pack/

Driver Station and Robot Controller Pairing

NOTE: You should update your Driver Station(DS) and Robot Controller(RC) phones to the latest app version
in order to use the new Expansion Hub controller. The minimum compatible version is 3.1 released on May
10th, 2017

Please ensure that the Driver Station and Robot Controller phones are properly configured and paired. Refer
to the latest pairing and troubleshooting instructions provided by in the FTC Control System Wiki.

https://github.com/ftctechnh/ftc_app/wiki

Wiring Diagram

System Wiring Diagram

System Wiring Diagram

Before configuring your Expansion Hub, devices must be connected to the Expansion Hub. Below is a
sample wiring diagram to show a sample of actuators and sensors usable with the Expansion Hub.

Configuration

Every device connected to the Expansion Hub (REV-31-1153) will need to be added to the Robot
Configuration file before you can use the device in your program. The Robot Configuration will allow you to
give your sensors and actuators meaningful names that you can reference while programming.

For this example, we will configure a simple two motor robot drivetrain.

Step Image

Select the menu on either the Driver Station or Robot
Controller. Then select “Configure Robot”.

Select “New” in the top left hand corner.

Select “Expansion Hub Portal 1” (embedded).

https://www.revrobotics.com/rev-31-1153/

Select “Expansion Hub 1”.

Select “Motors”.

Select the Drop Down menu for “Port 0” then select the
motor type attached to the port. In the case of the Minibot in
Figure 4, select the “Rev Robotics Core Hex Motor”.

Press “Enter motor name here” and name the motor
“left_drive”.
This is the name that you will use when you are
programming your robot to control this motor. Always use
descriptive names so that you can remember what a device
does when you are programming.

Repeat the process for “Port 1” and name the motor
“right_drive”.

Press “Done” once to go back to the list of device ports and
then select I2C Bus 0.

Add the built-in REV Expansion Hub IMU. Name it “imu”

Press the “Done” button (at the top left corner of the page) 3
times.

Press “Save”.

Enter “miniBot” as your configuration name, then select
“OK”.

You now have an active configuration called “miniBot”.
Press the Android back button to return to the Driver Station
page.

Adding More Motors

The Control Hub (REV-31-1595) and Expansion Hub (REV-31-1153) can each drive up to four DC brushed
motors. As mechanisms are added to the robot the number of motor ports may not be sufficient. There are
two ways to add more motors to the Control System, either the SPARKmini Motor Controller (REV-31-1230)
or adding an Expansion Hub. The Following two rules give a general idea of when to choose one method
over another:

The Control Hub (REV-31-1595) and Expansion Hub (REV-31-1153) can each drive up to four DC brushed
motors. As mechanisms are added to the robot the number of motor ports may not be sufficient. There are
two ways to add more motors to the Control System, either the SPARKmini Motor Controller (REV-31-1230)
or adding an Expansion Hub. The Following two rules give a general idea of when to choose one method
over another:

If one or two motors are needed, consider using the SPARKmini Motor Controller.
If three to four additional motors are needed, consider adding an Expansion Hub.

For additional information on how to use a SPARKmini or how to add an Expansion Hub, visit the linked
pages!

https://www.revrobotics.com/rev-31-1595/
https://www.revrobotics.com/rev-31-1153/
https://www.revrobotics.com/rev-31-1230/
https://www.revrobotics.com/rev-31-1595/
https://www.revrobotics.com/rev-31-1153/
https://www.revrobotics.com/rev-31-1230/

SPARKmini Motor Controller

The SPARKmini Motor Controller (REV-31-1230) is an inexpensive in-line brushed DC motor controller
designed to give FIRST® Tech Challenge teams more bang for their buck. It offers the same performance
characteristics as the REV Control Hub (REV-31-1595) or Expansion Hub (REV-31-1153) motor ports in a
small 60mm x 22mm footprint. Now FTC teams can add a SPARKmini Motor Controller to utilize more than
four DC motors from a single Hub in a space-efficient package.

POWER AND MOTOR CONNECTIONS

The SPARKmini has three integrated wires with connectors dedicated to power, control, and the motor; one
XT30 connector for power, one 3-wire servo-PWM connector for control, and one JST-VH connector for the
motor. The figure below shows each of these connections.

Connect the power wire to a free XT30 port on the REV Control Hub , REV Expansion Hub (REV-31-1153), or
through an XT30 Power Distribution Block (REV-31-1293) that is connected to a free Control/Expansion Hub
XT30 port. Connect the control wire to an open servo port on the hub and the motor wire to a JST-VH port on
a motor, like the REV HD Hex Motor (REV-41-1301) or the REV Core Hex Motor (REV-41-1300).

DO NOT reverse polarity on the power input connections. The SPARKmini does not contain
reverse polarity protection. This can permanently damage the SPARKmini and will void the
warranty.

DO NOT swap the motor and power connections. This can result in uncontrolled motor operation
and can permanently damage the SPARKmini, voiding the warranty.

 SERVO-PWM INPUT

A motor’s speed is controlled by varying the voltage that is applied to it. The SPARKmini’s output voltage can
be controlled by sending it an extended-range servo-PWM pulse. The extended 500µs to 2500µs servo-pulse
corresponds to full-reverse and full-forward rotation with 1500µs as the neutral position (no rotation). The

https://www.revrobotics.com/rev-31-1230/
https://www.revrobotics.com/rev-31-1595/
https://www.revrobotics.com/rev-31-1153/
https://www.revrobotics.com/rev-41-1301/
https://www.revrobotics.com/rev-41-1300/

Coast/Brake Switch

pulses are proportionally related to the motor output duty cycle, therefore variable speed can be achieved
with pulses in between the extremes. The following table describes the pulse ranges in more detail.

Table - Control Signal Pulse Ranges

Pulse Width (p in µs)

Full Reverse Prop. Reverse Neutral Prop. Forward Full Forward

p ≤ 500 500 < p < 1490 1490 ≤ p ≤ 1510 1510 < p < 2500 2500 ≤ p

ZERO-POWER BEHAVIOR

When the SPARKmini is receiving a neutral command it will not provide any power to the attached motor.
There are two options for how the SPARKmini handles this zero-power state:

Brake - Motor terminals are shorted to each other to dissipate electrical energy, effectively braking the motor.
Coast - Motor terminals are disconnected, allowing the motor to spin down at its own rate.

The zero-power behavior can be selected via a switch located towards the center of the SPARKmini housing,
shown in Figure 2. Each mode can be selected by sliding the switch to either the Brake (B) or Coast (C)
positions.

The SPARKmini will indicate whether it is in Brake or Coast mode via the Status LED, located in the center of
the housing, whenever it is outputting zero-power. Solid or flashing blue indicates Brake Mode while solid or
flashing yellow indicates Coast Mode. See the LED Status Codes section for more details.

LED STATUS CODES

Brake
Coas t

Brake
Coas t

Neutra l

Proportional Revers e

Full Revers e

No Signal

Full Forward

Proportional Forward

LED Status Code
Time Scale 1 s econd 1 s econd

State Normal Operation

SPECIFICATIONS

Parameter Min Typ Max Unit

Supply voltage range (VIN) 6.0 12 20 V

Supply voltage absolute maximum - - 25 V

Continuous output current - - 15 A

Peak output current - - 20 A

Output voltage range - VIN - + VIN V

Output frequency - 10 - kHz

Input pulse width range 500 - 2500 µs

Input frequency 16 50 200 Hz

Input timeout - 65.5 - ms

Input deadband - ±10 - µs

Input low-level voltage -0.3 - 0.8 V

Input high-level voltage 2.0 5.0 5.3 V

Weight - 0.87 - oz

Dimensions (excluding wires) - 60 x 22 x 12 - mm

Adding an Expansion Hub

If you want to use more than 4 motors or 6 servos, you can add an Expansion Hub to your robot. An
Expansion Hub (REV-31-1153) can be added to a Control Hub (REV-31-1595) or another Expansion Hub. The
Expansion Hub has all of the same ports as the Control Hub but without the wireless capability.

Control Hub vs Expansion Hub in FIRST

FIRST Tech Challenge FIRST Global

FIRST Tech Challenge teams may use one (1) Control
Hub and may add one (1) Expansion Hub starting in the
2020-2021 season. Read the official FTC Game
Manuals for complete game rules.

FIRST Global teams must use one (1) Control
Hub and may add one (1) Expansion Hub to
their robot. Read the official FIRST Global
manual for complete game rules.

Adding an Expansion Hub to your Robot

Step Image

Use the XT Extension Cable to connect power between the
Control Hub and the Expansion Hub.

Use a 3-pin JST PH cable to connect the RS485 port on the
Control Hub to the Expansion Hub.

https://www.revrobotics.com/rev-31-1153/
https://www.revrobotics.com/rev-31-1595/

From the Driver Station choose “Configure Robot”

Select “New” in the top left hand corner.

Select “Expansion Hub Portal 1”

Now you have two Expansion Hubs to choose from.
“Expansion Hub 1” is the embedded device of the Control
Hub or the Android Device the Expansion Hub is connected
to via USB.

“Expansion Hub 2” is the connected Expansion Hub that is
communicating over RS485.

Configure and program as necessary. Please see the
Configuration section of for an overview of configuration.

Managing the Control System

Resetting the WiFi Network

The Control Hub can be reset to the default WiFi settings. This will reset the password and SSID name while
keeping Op Modes and the Robot Controller application installed on the Control Hub.

Step Image

Press and hold the button on the front of the Control Hub.

While pressing the button, power on the Control Hub.

Release button when the Control Hub LED flashes PINK.
When the Control Hub flashes BLUE then GREEN, it has
completed the reset and is ready to connect.

Updating Firmware

Updating the Expansion Hub Firmware

The Control Hub has its own built-in REV Robotics Expansion Hub board. The purpose of the Expansion Hub
board is to facilitate communication between the Control Hub's Android controller and the motors, servos,
and sensors of the robot. Periodically, REV Robotics will release new versions of the firmware which contains
fixes and improvements for the Expansion Hub. The firmware releases are in the form of a binary (".bin") file.

There are two boards within the Control Hub: an Expansion Hub and an Android controller. The Expansion
Hub board built into the Control Hub, facilitates a line of communication between the built in Robot
Controller and the motors, servos, and sensors. In order to improve the quality of the Hubs, REV Robotics will
release firmware updates for the Expansion Hub. When a firmware release occurs, both Control Hub and
Expansion Hub users will need to update their Expansion Hub firmware to the newest version.

You can use the Manage interface to upload the firmware file to the Control Hub. You can then use a Driver
Station that is connected to the Control Hub to initiate the firmware update. You can download the latest
firmware below.

Download the Latest REV Hub Firmware - Version 1.08.02

Updating the Expansion Hub Firmware

1. On the Manage page of the Control Hub user interface, press the Select Firmware button to to select the
firmware file that you would like to upload.

An Upload button should appear after you successfully selected a file.

2. Press the Upload button to upload the firmware file from your computer to the Control Hub.

The words "Firmware upload complete" should appear once the file has been uploaded successfully.

https://www.revrobotics.com/content/sw/REVHubFirmware_1_08_02.bin

3. On the Driver Station, touch the three dots in the upper right hand corner to display a pop-up menu.

4. Select Settings from the pop-up menu to display the Settings activity.

5. On the Driver Station, scroll down and select the Advanced Settings item (under the ROBOT
CONTROLLER SETTINGS category).

6. Select the Expansion Hub Firmware Update item on the ADVANCED ROBOT CONTROLLER SETTINGS
activity.

7. If a firmware file that is different from the version currently installed on the Expansion Hub was
successfully uploaded, the Driver Station should display some information about the current firmware
version and the new firmware version. Press the Update Expansion Hub Firmware button to start the
update process.

8. A progress bar will display while the firmware is being updated. Do not power off the Control
Hub/Expansion Hub during this process. The Driver Station will display a message when the update
process is complete.

Firmware Changelog

Version 1.8.2 (Latest Version)

Improved USB recovery in case of fault event (e.g. ESD fault)
Improved DC motor output linearity
Improved closed-loop control modes
Improved I2C speeds
Minor bug fixes

Download REV Hub Firmware Version 1.8.2

Version 1.7.2

Fixes a bug where encoder counts would occasionally reset.

Download REV Hub Firmware Version 1.7.2

Version 1.7.0

Fixes a bug where some I2C sensors can lock up the bus causing other additional performance issues.
Added new status LED blink code:

Blinking orange indicates the Hub is only powered over USB. In other words, turn on your main
power switch!

Other minor performance tweaks.

Download REV Hub Firmware Version 1.7.0

Version 1.6.0

Original Release

Download REV Hub Firmware Version 1.6.0

https://www.revrobotics.com/content/sw/REVHubFirmware_1_08_02.bin
https://www.revrobotics.com/content/sw/REVHubFirmware_1_07_02.bin
https://www.revrobotics.com/content/sw/REVHubFirmware_1_07_00.bin
https://www.revrobotics.com/content/sw/REVHubFirmware_1_06_00.bin

Updating Operating System

The Control Hub’s Operating System is field upgradable. New updates are released to incorporate fixes,
improvements, and new features as they are developed. Using a web browser and a PC, follow the steps
below for updating the Operating System on the Control Hub. You can download the latest Operating System
below.

Download the Latest REV Control Hub Operating System - Version 1.1.1

Step Image

Power on the Control Hub, by plugging the 12V Slim Battery
(REV-31-1302) into the XT30 connector labeled “BATTERY”
on the Control Hub.

The Control Hub is ready to connect with a PC when the LED
turns green. Note: the light blinks blue every ~5 seconds to
indicate that the Control Hub is healthy.

Connect to the Control Hub’s WiFi Network. If it is not
renamed, the name will begin with either “FIRST-“ or “FTC-“.

Open a browser and navigate to the FIRST Robot Controller
Console (type 192.168.43.1:8080 in the navigation bar).
Select the Manage Tab.

Scroll down to “Update Control Hub Operating System” and
press the “Select Update File” button.

Choose the latest version downloaded in Step 1 and press
the “Update & Reboot” button.

https://www.revrobotics.com/content/sw/chv1/ControlHubOS-1.1.1.zip
https://www.revrobotics.com/rev-31-1302/

Keep the Control Hub powered while the upload finishes.

Keep the Control Hub powered while the update is installed.
The Control Hub will reboot to complete the update.

When the OS update has completed, the Control Hub LED
will switch from blue, back to its normal blink pattern.

Reconnect your computer to the Control Hub network and
verify that the update was a success.

Operating System Changelog

Version 1.1.1 - Latest Version

Fixed bug where Wifi access point would sometimes fail to start after an Operating System update
Stopped the FtcAccessPointService UI auto-starting on boot
Allowed WiFi beacon rate to be changed by the FTC Robot Controller app

Version 1.1.0

Improved reliability of making changes to WiFi access point settings
Updated to latest Realtek WiFi driver
Increased WiFi beacon rate to 6mbps, which reduces congestion when many Control Hubs are being
used in an area
Enabled 802.11w, which prevents WiFi deauthentication attacks when the Control Hub is used with a
client device that also supports 802.11w
Added WifiLog.txt file for debugging and disconnection analysis
Improved reliability of FtcAccessPointService UI (accessed through an HDMI monitor)
Added 5 GHz channels to FtcAccessPointService UI
Ensured app data is not lost when installing a Robot Controller with a different signature via the Manage
webpage
Fixed issue where WiFi SSID would sometimes be AndroidAP

Source Files for Control Hub OS:

Linux Kernel Source
U-Boot Source

https://github.com/REVrobotics/kernel-controlhub-android
https://github.com/REVrobotics/uboot-controlhub-android

Updating Robot Controller Application

The Robot Controller Application is periodically updated to incorporate fixes, improvements, and new
features as they are developed. Follow the steps below for updating the Robot Controller Application.

If you update your Robot Controller, then you should also update your Driver Station software to
the same version number.

Updating the Robot Controller App

1. Go to the current season's GitHub repository and look in the "doc/apk" subdirectory to download the
appropriate APK file. For the Skystone season, the APK files can be found here.

2. Click on the FtcRobotController-release.apk link in the repository to access the Robot Controller file.

3. Click on the Download button to download the Robot Controller app as an APK file to your computer.

https://github.com/FIRST-Tech-Challenge/SkyStone/tree/master/doc/apk

4. On the Manage page, click on the Select App button to select the Robot Controller app that you would
like to upload to the Control Hub.

An Update button should appear if an APK file was

successfully selected.

5. Click on the Update button to begin the update process.

6. During the update process, if the Control Hub detects that the digital signature of the APK that is being
installed is different from the digital signature of the APK that is already installed, the Hub might prompt
you to ask if it is OK to uninstall the current app and replace it with the new one.

This difference in digital signatures can occur, for example, if the previous version of the app was built
and installed using Android Studio, but the newer app was downloaded from the GitHub repository.

Press OK to uninstall the old app and continue with the update process.

7. If the update process had to uninstall the previous version of the Robot Controller app, the network
name and password for the Control Hub will be reset back to their factory values. If this happens, then you
will need to reconnect your computer to the Control Hub using the factory default values.

8. When the update process is complete and you have successfully reconnected your computer to the
Control Hub's network, you should see an "installed successfully" message on the Manage web page.

Troubleshooting the Control System

One of the key aspects of troubleshooting is understanding the most common issues that occur in a system.
Once those problems, and their indicators, are defined -a flow has to be created. For example, a check engine
light in a car indicates any number of issues. When a cars check engine light comes on, a mechanic pulls the
codes from the car to narrow down the issue to a specific part of the engine. Even if the code leads to a
specific part of the engine, like the transmission, it is not always indicative of the exact problem. However,
there is a process flow. Each step narrows down the problem to a potential solution. Troubleshooting the
REV Control system is no different!

The status LED is the REV Control System equivalent to the check engine light mentioned in the
example. Visit the LED Blink Code section to understand what each code is and what it indicates.

Many issues can be solved by systematic troubleshooting without needing to contact REV Support. Take a
look at the troubleshooting tips below for help in determining the cause of the issue you are seeing. Should
you need to contact us, describing the steps you've taken in detail will help us get you up and running
quickly. The section is divided by general best practices, Control Hub (REV-31-1595) troubleshooting and
Expansion Hub (REV-31-1153) troubleshooting.

General Best Practices

Before diving into common troubleshooting paths its important to understand the general guidelines, or best
practices, for Control System Health.

Charge the Battery - While a charged battery and phone are crucial to a healthy control system in
general; it is also helpful to ensure batteries and phones are charged before a match.
Update - The applications, firmware, and operating system have periodic updates to improve the control
system. Keeping the control system up to date ensures the best performance!
Isolate the Issue - This is key to effective troubleshooting. Many issues can show the same symptom,
so eliminating failure points one at a time is critical to finding the root cause.

DO NOT plug a battery charger into either the Control Hub or Expansion Hub. It will damage the
Hub and cause eventual device failure

https://www.revrobotics.com/rev-31-1595/
https://www.revrobotics.com/rev-31-1153/

Control Hub Troubleshooting

The following questions consider common indicators of issues seen in the Control Hub. Think about what
the potential indicators your Hub is currently exhibiting and consider the following questions:

Is the Driver Station phone unable to connect to to the Control Hub WiFi? Yes

Is the Driver Station connected to the WiFi but not showing a ping or any other signs of
communication?

Yes

Has the Status LED been solid blue for longer than 30 seconds (after start up)? Yes

Sometimes, its possible that you may have to try multiple routes when troubleshooting. Perhaps, at first, it
seems like the only indicator is that the Driver Station wont connect to the Hub WiFi; but it becomes apparent
that the Status LED has been solid blue the entire time since startup. In this guide, the process flow charts
have been crafted to tie in to each other where indicators may overlap.

If a path in this guide does not resolve the issue please contact REV Robotics Support at
support@revrobotics.com

Cant Connect to the Hub Via WiFi

Can't Connect Via
WiFi

YES

NO

Is the
network
visible?

Green BlueStatus LED
output?

Please jump to the
troubleshooting guide for
"Status LED is Solid Blue
for More than 30
Seconds"

Please follow through the following WiFi reset
procedure:

1. Press and hold the button on the front
of the Control Hub

2. While pressing the button, power on
the Control Hub

3. Release button when the Control Hub
LED flashes PINK. When the Control
Hub falshe Blue then Green it has
completed the reset and is ready to
connect.

The WiFi reset will down grade the WiFi connection to 2.4GHz. If you have an android device with
5GHz you may want to switch the WiFi Band in order to run on 5GHz. Check out the Changing
WiFi Channel Section to learn more about making this switch.

Driver Station Won't Connect

Driver Station Won't
Connect

NO

YES

Connected to
Control Hub

WiFi?

Green/Blue
Blink Code

BlueStatus LED
Color?

WiFi Direct

Control
Hub

Pairing
Method?

YES

NO
Does the DS
connect if you
reset the App?

Please jump to the
troubleshooting guide for
"Status LED is Solid Blue for
More than 30 Seconds"

Change the pairing
method to Control Hub
and Restart the App.

Please Contact REV
Support with the following
information:

Control Hub Logs
Driver Station Logs

YES

NO

Has a
secondary DS

been connected
to the hub?

The secondary Driver Station
is likely affecting the
connection between the Hub
and the primary Driver Station.
Try the following steps:

Power off the 2nd DS
Power cycle the Hub

Select a configuration
and attempt to run an
Op Mode.

Please follow through the following WiFi reset
procedure:

1. Press and hold the button on the front of
the Control Hub

2. While pressing the button, power on the
Control Hub

3. Release button when the Control Hub
LED flashes PINK. When the Control Hub
falshe Blue then Green it has completed
the reset and is ready to connect.

Need help getting the Log Files to send to REV Support? See Downloading Log File for more
information.

Status LED is Solid Blue for Longer than 30 Seconds

Status LED is Solid Blue
for longer than 30

seconds

YES NO
Does fault

persist through
power cycle?

When dealing with the Control Hub
make sure to give the it time to
boot up before giving commands.

If the problem occurs frequently
please contact REV Support.

NO

YES Using Android
Studio?

YES

NO

Is LED Green?

YES

NO

Using external
libraries?

YES

NO

Is LED Green?

YES

NO

Does a firmware
update succeed?

Redeploy, if
successful reboot

Hub

Connect to Driver Station
and attempt to run
configuration.

Please check the Control Hub
permissions:

Plug the Control Hub into
a monitor via HDMI
Plug a mouse into the
Control Hub USB port
Check for Prompts

Update to the
latest firmware

Connect to Driver Station
and attempt to run
configuration.

Contact REV Support with the following logs:

robotControllerLog.txt
ConfigurationName.XML

Need help getting the Log Files to send to REV Support? See Downloading Log File for more
information.

Expansion Hub Troubleshooting

The following sections, "Common Indicators and their Solution Steps," provides common indicators of
issues seen in the Expansion Hub. Think about what the potential indicators your Hub is currently exhibiting
and consider the following questions:

Did you perform a firmware update before the Hub began to have issues?
What is the behavior of the Status LED on the Expansion Hub?
Is the Driver Station showing an error message 'Cant find the Expansion Hub Portal"?
Did the Robot Controller app open when you plugged in the RC phone and gave power to the Hub?
Are you experiencing issues with communication between a primary and secondary Hub?

If a path in this guide does not resolve the issue please contact REV Robotics Support at
support@revrobotics.com

Common Indicators and their Solution Steps

The firmware update failed and the Hub is unresponsive
Try a Firmware Update

The LED on the Expansion Hub is not lighting up
Try a Firmware Update
The LED is still not lighting up

The Hub is not being recognized or communicating with the phones
Try doing the Hub Startup Procedure

There are issues seeing a secondary Hub
Try doing the Hub Startup Procedure
There are still issues seeing the secondary Hub

Firmware Update

1. Install the REV Hub Interface Software (www.revrobotics.com/software)
You may need FTDI Drivers depending on the version of Windows you are running:
http://www.ftdichip.com/Drivers/VCP.htm

2. Plug your Expansion Hub into your computer
3. Boot the REV Hub Interface Software
4. Select Firmware tab then click the Choose .bin file button

1. Select the version of the firmware you want to install (hint it comes with the latest and greatest
version)

5. Let the firmware install
�. After install is finished, select Connect on the REV Interface Software.

1. Hub should read connected and have a Green Light showing connection

USB Serial Converter Check

1. Plug your Expansion Hub into a Windows PC
2. Open the Device Manager in Settings
3. Click the arrow next to Universal Serial Bus Controllers
4. Find USB Serial Converter under the menu
5. If this is not present there maybe a larger issue with your hub. Email support@revrobotics.com with

details of the steps you have taken so far,and any order numbers for the Expansion Hub (if you have
them)

If you are using a Mac you can use System Information in Lion or later (or System Profiler in
Snow Leopard and earlier versions of Mac OS) in Spotlight (press ⌘ and Space). The program is
in /Applications/Utilities and is the tool to see the connected USB devices and other hardware
details.

http://www.revrobotics.com/software
http://www.ftdichip.com/Drivers/VCP.htm

Hub Startup Procedures

1. Unplug the USB from your RC phone
2. Power off the main robot switch (turn off 12V power from the Expansion Hub(s))
3. Wait a few seconds
4. Turn on the Main Robot Switch (supply 12V power to the Expansion Hub(s))
5. On your RC phone, press the square button and the swipe to close the FTC RC app
�. Plug your RC phone into the USB-- the FTC app should automatically open

1. If the app doesn't automatically open you do not have a good connection from the Expansion Hub
to the Phone. Check your cables first, followed by the micro and mini USB connections.

2. Consider using some form of strain relief (like the REV USB Retention Mount or one of the many 3d
printable options available on places like Thingiverse) to keep the USB-mini port from being
damaged.

If the issues persists after applying the Retention Mount try running through the Firmware Update
procedure.

Persistent inability to see a secondary Hub

1. See the Expansion Hub Guide (www.revrobotics.com/resources)
2. Rerun through the configuration and addressing steps in the guide

1. Make sure the leader hub is addressed as 2 and the follower hub is addressed as 3.
3. Connect the two Hubs to each other has described in the Expansion Hub Guide
4. Install the REV Hub Interface Software on a PC if not already done
5. Plug the Leader Hub into the Computer with the REV Hub Interface Software installed.
�. Press Connect
7. The DC Motor page should split in two with 8 total motor controls available if both are functioning

properly.
1. Also, you can look at the LEDs on the Hubs. They should be solid Green with occasional blue

blinking.

http://www.revrobotics.com/rev-41-1214/
http://www.revrobotics.com/resources

Downloading the Log File

Occasionally, troubleshooting problems in the REV Control System will require that a log file is looked over
for potential indicators. Often the first log that is considered is the Robot Controller log, as they are relatively
easy to decipher and can be pulled from the Control Hub. However, other indicators and pathways in the
troubleshooting process may require you to pull the XML files off the Hub in addition the the Robot
Controller logs.

There are two ways to access the Robot Controller logs. The first way is to search through the Control Hub
(REV-31-1595) files by plugging the hub into the computer. The second way is to connect to the Robot
Control Console and download the logs to the computer from there. The table below highlights the scenarios
you would use one process over the other.

File Search Robot Controller Console

The Hub is NOT able to establish a connection with
a laptop to open the Robot Control Console

The Hub has a connection but the logs need to be
accessed to determine the Firmware version

The XML Files need to be accessed in addition to
the Robot Controller Logs

File Search

1.Provide 12v Power to the Control Hub.

2.Plug the USB-C Cable into the top board of the Hub and into a PC

3.Navigate to This PC\Control Hub v1.0\Internal shared storage should have a file named
robotControllerLog.txt (this is for on windows. Mac should have a similar file explorer to pull the txt file)

The robotControllerLog.txt can either be open via Notepad++ and looked over or sent to REV
Support via an email to be further troubleshooted.

4.While in the This PC\Control Hub v1.0\Internal shared storage location navigate to a folder called "FIRST."
The folder should have XML files with a naming convention that mirrors the names of the robot
configuration.

Problems in the XML files will only be able to be interpreted by REV personnel.

https://www.revrobotics.com/rev-31-1595/

Robot Controller Console

1.Open the Robot Controller Console

2. Select the Manage page

3. Press the Download Logs button

4. Check for the robotControllerLog.txt in the Downloads Directory of the Computer

5. Open the Logs via a text editor, like Notepad++, to view the contents of the log or send the logs to REV
Support

LED Blink Codes

The RGB LED located on the Control Hub (REV-31-1595) and Expansion Hub (REV-31-1153) near the RS485
ports provides user feedback regarding the status of the Hub. Below is a Table of the Blink Codes

Firmware Version 1.07.00 or Higher LED Codes

LED Status
LED
Description

When Hub Status

Solid Blue At Boot
Control Hub has power; Battery is >7V and is waiting to
initialize communications.

Solid Blue Anytime
Hub is waiting for communication with the Driver Station
Host.
Control Hub has power; Battery is >7V.

Solid Green
with one or
more blue
blinks every
~5 Seconds

Anytime

Hub has power and active communication with the
Android Platform. The number of blue blinks is the same
as the Hub’s address.

The factory default address is 2 ().

Blinking Blue Anytime
Keep alive has timed out. Fault will clear when
communication resumes.

Blinking
Orange

Anytime

Battery Voltage is lower than 7V. Either the 12V battery
needs to be charged, or the Expansion Hub is running on
USB power only. This fault will clear when battery voltage
is raised above 7V.
This will not be overwritten by the keep alive timeout
pattern.

https://www.revrobotics.com/rev-31-1595/
https://www.revrobotics.com/rev-31-1153/

REV Hub Interface Software

The REV Hub Interface is a beta software allowing for a direct connection from a REV Expansion Hub and its
peripherals to a Windows PC.

This interface provides a method for teams to prototype with motors, servos, and sensors in a way that is
faster and easier than setting up an entire robot control system. It is also a valuable troubleshooting tool
that can help isolate the cause of an issue and determine if it is electrical or software related. The REV Hub
Firmware can also be updated and recovered through this interface in addition to the Robot Controller
Application.

Download the Latest Hub Interface Software - Version 1.2.0

The REV Hub Interface Software only works with the REV Expansion Hub and not the REV Control
Hub

System Requirements

Operating System: Windows 7 or newer*
Processor: 64-bit
RAM: Yes

 The newest versions of Windows should automatically install the required USB drivers.
Alternatively, you can download the latest drivers from the FTDI VCP website.

Installation Instructions

1. Download the Hub Interface software installer above.
2. Run the installer.
3. Run the REV Hub Interface Software from the Windows Start Menu or the desktop shortcut

Connecting and Controlling an Expansion Hub

1. Connect your Expansion Hub to the computer with a USB A to USB Mini-B cable.
2. Run the REV Hub Interface Software.
3. The software will scan and connect to the Expansion Hub. The various peripheral tabs will populate with

controls once connected.

https://www.revrobotics.com/content/sw/REVHubInterface-1.2.0.exe
https://www.ftdichip.com/Drivers/VCP.htm

Some peripherals, such as DC Motors and Servo Motors, require a battery to be connected to the
Expansion Hub in order to operate through the REV Hub Interface.

Alternative Installation Method

You may also download the following zip file if you would rather unzip the application in a directory of your
choice. This method shouldn't require administrator privileges.

REV Hub Interface Software Zip File

LATEST HUB INTERFACE SOFTWARE CHANGE LOG - VERSION 1.2.0

Display encoder values on 'DC motors' tab.
Added support for REV Color Sensor V3.
Display proximity values along with RGBC for REV color sensors.
Display REV Hub Interface version on the 'Firmware' tab.
Changed behavior of 'INIT' and 'POLL' buttons on 'I2C'. User can no longer poll a device until it has been
successfully initialized.
Added ability to set LED pattern.
Bug fix where 'POLL' had to be pressed twice to read values from the IMU.
Bug fix where status LED would continue to flash blue the second time REV Hub Interface is connected.
Allow user to press enter key to update motor/servo values.
Fixed gyro labels on IMU tab and corrected units for linear acceleration.

https://www.revrobotics.com/content/sw/REVHubInterface-1.2.0.zip

Programming

Programming Language Options

When programming within the REV Control System, there are three programming tools to choose from:
Blocks, OnBot Java, and Android Studio. The following section highlights basic information, use cases, and
access examples for the three compilers.

Blocks

The Blocks Programming Tool is a visual, programming tool that lets programmers uses a web browser to
create, edit and save their op modes. This tool offers preset snippets of code that can be presented visually,
using a drag-and-drop interface.

The Blocks Programming Tool lacks the complexity of the Java based programming tools available, which
makes it a great place to start for rookie or novice programmers. Rookie programmers can learn
programming logic in an intuitive and easy-to-learn environment. Because the Blocks Programming tool is a
web-based interface, where programs are saved directly to the robot, it is easy to access on most devices to
make code changes.

Accessing Blocks

This section assumes that you have already gone through the Configuring Android Device
process and that you have JavaScript enabled web browser.

1. Go to WiFi Settings, on a Windows 10 Computer, by clicking on the Wi-Fi symbol.
2. Once the list of available Wi-Fi networks in the vicinity is displayed select the network that matches the

name of your WiFi access point.
3. Enter the password you set during the configuration phase.
4. Once connected, open a JavaScript enabled browser (FIRST recommends Google Chrome).
5. Go to IP Address http://192.168.43.1:8080
�. At the top of the Robot Controller Console Page, there should be 3 menu options: Blocks, OnBot Java,

and Manage. Choose Blocks.
7. Check out the First Op Mode section to begin coding!

Passwords are case sensitive. If you do not remember your password, check the Program and
Manage menu option on your driver station.

OnBot Java

A text-based programming tool that lets programmers use a web browser to create, edit and save their Java
op modes.

https://github.com/FIRST-Tech-Challenge/SKYSTONE/wiki/Configuring-Your-Android-Devices#renaming-your-smartphones
https://github.com/FIRST-Tech-Challenge/SKYSTONE/wiki/Configuring-Your-Android-Devices#renaming-your-smartphones

OnBot Java is great for programmers with basic to advanced Java skills who would like to write text-based
op modes. OnBot Java shares a web-based interface with the Blocks Programming tool. The web-based
model is easy to access on most devices to make code change and reduces the need to have one set device
for code changes.

Accessing OnBot Java

This section assumes that you have already gone through the Configuring Android Device
process and that you have JavaScript enabled web browser.

1. Go to WiFi Settings, on a Windows 10 Computer, by clicking on the Wi-Fi symbol.
2. Once the list of available Wi-Fi networks in the vicinity is displayed select the network that matches the

name of your WiFi access point.
3. Enter the password you set during the configuration phase.
4. Once connected open a JavaScript enabled browser (FIRST recommends Google Chrome).
5. Go to IP Address http://192.168.43.1:8080
�. At the top of the Robot Controller Console Page There should be 3 menu options Blocks, OnBot Java,

and Manage. Choose OnBot Java
7. Check out the First Op Mode section to begin coding!

https://github.com/FIRST-Tech-Challenge/SKYSTONE/wiki/Configuring-Your-Android-Devices#renaming-your-smartphones
https://github.com/FIRST-Tech-Challenge/SKYSTONE/wiki/Configuring-Your-Android-Devices#renaming-your-smartphones

Passwords are case sensitive. If you do not remember your password check the Program and
Manage menu option on your driver station.

Android Studio - Java

An advanced integrated development environment for creating Android apps. This tool is the same tool that
professional Android app developers use. Android Studio is only recommended for advanced users who
have extensive Java programming experience.

Android Studio allows programmer with an advanced understanding of Java a more powerful development
environment to work in. It offers enhanced editing and debugging features not available with OnBot Java or
Blocks. However, Android Studio is not a web-based software and will need a dedicated laptop to run on.

Accessing Android Studio

To learn about how to properly download and work with Android Studio please visit the FTC Wiki.

https://github.com/ftctechnh/ftc_app/wiki/Android-Studio-Tutorial

Hello Robot - Programming an Op Mode

In most programming languages the first thing taught is the basic "Hello World" program. This code teaches
users basic syntax and logic of a language, while also testing that the system being used to execute the
code is functioning properly. This section of the guide will act as the REV Robotics version of the "Hello
World" concept. By the end of this section users will have a basic knowledge of op modes and code syntax
for OnBot Java and Blocks.

It is important for programming in the REV Control System that you have a Configuration. Robot
Configurations give names to the different mechanical elements of a robot - like sensors, servos,
and motors - that can be referenced in the code. If you have not set up a configuration yet please
visit the Expansion Hub Configuration section or the Control Hub Configuration section to learn
how to set one up.

What is an Op Mode?

Op modes (or operational modes) are computer programs that are used to customize or specify the behavior
of a robot. Op modes are saved onto and executed by the Robot Controller -either the Control Hub (REV-31-
1595) or an Android device paired with an Expansion Hub (REV-31-1153). When op modes are saved to the
Robot Controller they can be accessed and started by the Driver Station.

Hello Robot - Basic Op Mode Walkthrough

This section will walk through how to create an op mode in both OnBot Java and Blocks

This section assumes that you have already learned how to access the specific programming
tool that you have chosen to use. Check out the Programming Language Options to pick a
language and learn how to access it.

https://www.revrobotics.com/rev-31-1595/
https://www.revrobotics.com/rev-31-1153/

Accessing Blocks

Press the Blocks link towards the top of the Console to navigate to the main Blocks Programming screen.

The main Blocks Programming screen is where you create new op modes. It is also the screen where you
can see a list of existing Blocks Op Modes on a Robot Controller. Initially, this list will be empty until you
create and save your first op mode.

Accessing OnBot Java

Press the OnBot Java link towards the top of the Console to navigate to the main OnBot Java Screen.

The OnBot Java screen is where you create new op modes. It is also the screen where you can see a list of
existing op Modes on a Robot Controller. IThe list will be empty until you create and save your first op mode.

Creating an Op Mode

Before diving in and creating your first op mode, you should consider the concept of naming conventions.
When writing code the goal is to be as clear as possible about what is happening within the code. This is
where the concept of naming conventions comes into play. Common naming conventions have been
established by the programming world to denote variables, classes, functions, etc. Op modes share some
similarities to classes. Thus the naming convention for op modes tends to follow that naming convention
for classes; where the first letter of every word is capitalized.

For the example below you should also create a configuration file with a motor, servo, touch sensor,
color/range sensor, and the IMU. The following list is the naming conventions for the components that will
be used in the example.

Motor - motorTest
IMU - imu
Servo - servoTest

https://en.wikipedia.org/wiki/Naming_convention_(programming)
https://en.wikipedia.org/wiki/Class_(computer_programming)

Touch Sensor - digitalTouch
Color/Range Sensor - sensorColorRange

To learn how to create a configuration file for your robot check out Configuring Your Hardware on
the FTC Wiki

The following tab block will walk through how to make create an op mode. In both examples the op mode
will be named MyFIRSTOpMode.

https://github.com/FIRST-Tech-Challenge/SKYSTONE/wiki/Configuring-Your-Hardware

Blocks

Press the “Create New Op Mode” button in the upper left corner of the Robot Control Console Blocks
Menu, seen in the image below.

The "Create New Op Mode" window should appear. Enter the name for your op mode and hit "OK"

After selecting "OK" a screen similar to the one in the image below will appear. There are several key
areas:

1. Clicking Save OP Mode is how the op mode is saved to the Robot Controller
2. Switch between TeleOp and Autonomous modes to determine the function of the op mode
3. Blocks are divided into category types. Click the category to sort through potential block options

OnBot Java

The image below shows the OnBot Java user interface. On the left hand side, there is the project
browser pane. In the upper right hand corner, there is the source code editing pane. In the lower right
hand corner, there is the message pane.

In the project browser pane, press the “+” symbol to create a new file. Pushing this button will launch
the New File dialog box. This dialog box has several parameters that you can configure to customize
your new file.

Using the Sample dropdown list control, select BlankLinearOpMode from the list of available sample
op modes (see image above). By selecting BlankLinearOpMode the OnBot Java editor will
automatically generate a basic LinearOpMode framework for you.

Check the option labeled “TeleOp” to ensure that this new file will be configured as a tele-operated
(i.e., driver controlled) op mode.

Also, make sure you check the “Setup Code for Configured Hardware” option. If this option is enabled,
the OnBot Java editor will look at the hardware configuration file for your Robot Controller and
automatically generate the code that you will need to access the configured devices in your op mode.

Press the “OK” button to create your new op mode.

Writing an Op Mode

If you think about an op mode as a list of instructions for the robot, this set of instructions that you created
will be executed by the robot whenever a team member selects the op mode called “MyFIRSTJavaOpMode”

from the list of available op modes for this Robot Controller. For a linear op mode, the Robot Controller will
process this list of tasks sequentially. Users can also use control loops (such as a while loop) to have the
Robot Controller repeat (or iterate) certain tasks within a linear op mode.

The following code walkthrough assumes you have already created an op mode and configured
your hardware.

https://github.com/FIRST-Tech-Challenge/SKYSTONE/wiki/Configuring-Your-Hardware

Blocks

When you create a new op mode, there should already be a set of programming blocks that are
placed on the design canvas for your op mode. These blocks are automatically included with each
new op mode that you create. They create the basic structure for your op mode.

The blue colored block with the words “Put initialization blocks here” is a comment. Comments are
placed in an op mode for the benefit of the human user. The robot will ignore any comments in an op
mode.

Any programming blocks that are placed after the “Put initialization blocks here” comment (and
before the “call MyFIRSTOpMode.waitForStart” block) will be executed when the op mode is first
selected by a user at the Driver Station.

When the Robot Controller reaches the block labeled “call MyFIRSTOpMode.waitForStart” it will stop
and wait until it receives a Start command from the Driver Station. A Start command will not be sent
until the user pushes the Start button on the Driver Station. Any code after the “call
MyFIRSTOpMode.waitForStart” block will get executed after the Start button has been pressed.

After the “call MyFIRSTOpMode.waitForStart”, there is a conditional "if" block ("if call
MyFIRSTOpMode.isActive") that only gets executed if the op mode is still active (i.e., a stop

command hasn't been received).

Any blocks that are placed after the “Put run blocks here” comment and before the green block
labeled “repeat while call MyFirstOpMode.opModeIsActive” will be executed sequentially by the Robot
Controller after the Start button has been pressed.

The green block labeled “repeat while call MyFirstOpMode.opModeIsActive” is an iterative or looping
control structure.

This green control block will perform the steps listed under the “do” portion of the block as long as
the condition “call MyFIRSTOpMode.opModeIsActive” is true. What this means is that the statements
included in the “do” portion of the block will repeatedly be executed as long as the op mode
“MyFIRSTOpMode” is running. Once the user presses the Stop button, the “call
MyFIRSTOpMode.opModeIsActive” clause is no longer true and the “repeat while” loop will stop
repeating itself.

OnBot Java

For analytical purposes, the following code will be broken up into pieces and logically explained.

As you are following through pay attention to the syntax of the statements. In most
programming languages syntax plays an important part in the code being deciphered and
run.

@TeleOp1
2

public class MyFIRSTJavaOpMode extends LinearOpMode {3
 private Gyroscope imu;4
 private DcMotor motorTest;5
 private DigitalChannel digitalTouch;6
 private DistanceSensor sensorColorRange;7
 private Servo servoTest;8

9
10

 @Override11
 public void runOpMode() {12
 imu = hardwareMap.get(Gyroscope.class, "imu");13
 motorTest = hardwareMap.get(DcMotor.class, "motorTest");14
 digitalTouch = hardwareMap.get(DigitalChannel.class, "digitalTouch");15
 sensorColorRange = hardwareMap.get(DistanceSensor.class, "sensorColorRange"16
 servoTest = hardwareMap.get(Servo.class, "servoTest");17

18
 telemetry.addData("Status", "Initialized");19
 telemetry.update();20
 // Wait for the game to start (driver presses PLAY)21
 waitForStart();22

23
 // run until the end of the match (driver presses STOP)24
 while (opModeIsActive()) {25
 telemetry.addData("Status", "Running");26
 telemetry.update();27

28
 }29
 }30
}31

At the start of the op mode there is an annotation that occurs before the class definition. This
annotation states that this is a tele-operated (i.e., driver controlled) op mode:

@TeleOp

If you wanted to change this op mode to an autonomous op mode, you would replace the
“@TeleOp” with an “@Autonomous” annotation instead.

You can see from the sample code that an op mode is defined as a Java class. In this example, the
op mode name is called “MyFIRSTJavaOpMode” and it inherits characteristics from the
LinearOpMode class.

public class MyFIRSTJavaOpMode extends LinearOpMode {

You can also see that the OnBot Java editor created five private member variables for this op mode.
These variables will hold references to the five configured devices that the OnBot Java editor detected
in the configuration file of your Robot Controller.

 private Gyroscope imu;1
 private DcMotor motorTest;2
 private DigitalChannel digitalTouch;3
 private DistanceSensor sensorColorRange;4
 private Servo servoTest;5

Next, there is an overridden method called runOpMode. Every op mode of type LinearOpMode must
implement this method. This method gets called when a user selects and runs the op mode.

 @Override1
 public void runOpMode() {2

At the start of the runOpMode method, the op mode uses an object named hardwareMap to get
references to the hardware devices that are listed in the Robot Controller’s configuration file:

 imu = hardwareMap.get(Gyroscope.class, "imu");1
 motorTest = hardwareMap.get(DcMotor.class, "motorTest");2
 digitalTouch = hardwareMap.get(DigitalChannel.class, "digitalTouch");3
 sensorColorRange = hardwareMap.get(DistanceSensor.class, "sensorColorRange"4
 servoTest = hardwareMap.get(Servo.class, "servoTest");5

The hardwareMap object is available to use in the runOpMode method. It is an object of type
HardwareMap class.

https://en.wikipedia.org/wiki/Class_(computer_programming)
https://en.wikipedia.org/wiki/Method_(computer_programming)
https://en.wikipedia.org/wiki/Object_(computer_science)

When you attempt to retrieve a reference to a specific device in your op mode, the name
that you specify as the second argument of the HardwareMap.get method must match the
name used to define the device in your configuration file. For example, if you created a
configuration file that had a DC motor named “motorTest”, then you must use this same
name (it is case sensitive) to retrieve this motor from the hardwareMap object.

In the next few statements of the example, the op mode prompts the user to push the start button to
continue. It uses another object that is available in the runOpMode method. This object is called
telemetry and the op mode uses the addData method to add a message to be sent to the Driver
Station. The op mode then calls the update method to send the message to the Driver Station. Then it
calls the waitForStart method, to wait until the user pushes the start button on the driver station to
begin the op mode run.

 telemetry.addData("Status", "Initialized");1
 telemetry.update();2
 // Wait for the game to start (driver presses PLAY)3
 waitForStart();4

All linear op modes should have a waitForStart statement to ensure that the robot will not
begin executing the op mode until the driver pushes the start button.

After a start command has been received, the op mode enters a while loop and keeps iterating in this
loop until the op mode is no longer active (i.e., until the user pushes the stop button on the Driver
Station):

 // run until the end of the match (driver presses STOP)1
 while (opModeIsActive()) {2
 telemetry.addData("Status", "Running");3
 telemetry.update();4

5
 }6

As the op mode iterates in the while loop, it will continue to send telemetry messages with the index
of “Status” and the message of “Running” to be displayed on the Driver Station.

Controlling Actuators

In programming, information is constantly being exchanged. When communicating with the whole of the
system (motors, servos, etc) the Control Hub is receiving input and, when coded correctly, using that input to
perform an action. While its possible for the robot to run autonomously off of the information exchange
happening within its own system; there are many situations where user input is necessary.

This section will cover how to assign input from a gamepad to control a motor and a servo.

Controlling a Motor

The following code walkthrough assumes you have already created an op mode and configured
your hardware.

https://github.com/FIRST-Tech-Challenge/SKYSTONE/wiki/Configuring-Your-Hardware

Blocks

On the left-hand side of the screen click on the category called “Variables” to display the list of block
commands that are used to create and modify variables within your op mode.

Click on “Create variable…” to create a new variable that will represent the target motor power for our
op mode.

When prompted, type in a name (“tgtPower”) for your new variable.

Once you have created your new variable, some additional programming blocks should appear under
the “Variables” block category.

Click on the “set tgtPower to” programming block and then use the mouse to drag the block to the
spot just after the “Put loop blocks here” comment block.

Click on the “Gamepad” category of the programming blocks and select the “gamepad1.LeftStickY”
block from the list of available blocks.

The control system lets you have up to two gamepads controlling a robot. By selecting
“gamepad1” you are telling the op mode to use the control input from the gamepad that is
designated as driver #1.

Drag the “gamepad1.LeftStickY” block so it snaps in place onto the right side of the “set tgtPower to”
block. This set of blocks will continually loop and read the value of gamepad #1’s left joystick (the y
position) and set the variable tgtPower to the Y value of the left joystick.

For the F310 gamepads, the Y value of a joystick ranges from -1, when a joystick is in its
topmost position, to +1, when a joystick is in its bottommost position. In our example, if
the left joystick is pushed to the top, the variable tgtPower will have a value of -1.

Click on the “Math” category for the programming blocks and select the negative symbol (“-“).

Drag the negative symbol (also known as a “negation operator”) to the left of the
“gamepad1.LeftStickY” block. It should click in place after the “set tgtPower to” block and before the
“gamepad1.LeftStickY” block.

With this change, the variable tgtPower will be set to +1 if the left joystick is in its topmost position
and will be set to -1 if the joystick is in its bottommost position.

Click on the “Actuators” category of blocks. Then click on the "DcMotor" category of blocks.

Select the “set motorTest.Power to 1” programming block.

Drag and place the “set motorTest.Power to 1” block so that it snaps in place right below the “set
tgtPower to” block.

Click on the “Variables” block category and select the “tgtPower” block.

Drag the “tgtPower” block so it snaps in place just to the right of the “set motor1.Power to” block.

The “tgtPower” block should automatically replace the default value of “1” block.

OnBot Java

Let’s modify your op mode to control the DC motor that you connected and configured for your REV
Expansion Hub or Control Hub. Modify the code for the program loop so that it looks like the
following:

// run until the end of the match (driver presses STOP)1
double tgtPower = 0;2
while (opModeIsActive()) {3
 tgtPower = -this.gamepad1.left_stick_y;4
 motorTest.setPower(tgtPower);5
 telemetry.addData("Target Power", tgtPower);6
 telemetry.addData("Motor Power", motorTest.getPower());7
 telemetry.addData("Status", "Running");8
 telemetry.update();9

10
}11

If you look at the code that was added, you will see that we defined a new variable called target
power before we enter the while loop.

double tgtPower = 0;

At the start of the while loop we set the variable tgtPower equal to the negative value of the
gamepad1’s left joystick:

tgtPower = -this.gamepad1.left_stick_y;

The object gamepad1 is available for you to access in the runOpMode method. It represents the state
of gamepad #1 on your Driver Station. Note that for the F310 gamepads that are used during the
competition, the Y value of a joystick ranges from -1, when a joystick is in its topmost position, to +1,
when a joystick is in its bottommost position. In the example code above, you negate the left_stick_y
value so that pushing the left joystick forward will result in a positive power being applied to the
motor. Note that in this example, the notion of forwards and backwards for the motor is arbitrary.
However, the concept of negating the joystick y value can be very useful in practice.

The next set of statements sets the power of motorTest to the value represented by the variable
tgtPower. The values for target power and actual motor power are then added to the set of data that
will be sent via the telemetry mechanism to the Driver Station.

 tgtPower = -this.gamepad1.left_stick_y;1
 motorTest.setPower(tgtPower);2
 telemetry.addData("Target Power", tgtPower);3
 telemetry.addData("Motor Power", motorTest.getPower());4

After you have modified your op mode to include these new statements, press the build button and
verify that the op mode was built successfully.

Controlling a Servo

Let’s modify your op mode to add the logic required to control a servo motor. For this example, you will use
the buttons on the Logitech F310 gamepad to control the position of a REV Robotics Smart Robot Servo
(REV-41-1097).

With a typical servo, you can specify a target position for the servo. The servo will turn its motor shaft to
move to the target position, and then maintain that position, even if moderate forces are applied to try and
disturb its position.

This section is considering the Smart Robot Servo in its default mode. If your servo has been
changed to function in continuous mode or with angular limits it will not behave the same using

https://www.revrobotics.com/rev-41-1097/

the code examples below. You can learn more about the Smart Robot Servo or changing the
Servo's mode via the SRS Programmer by clicking the hyperlinks.

For both Blocks and OnBot Java, you can specify a target position that ranges from 0 to 1 for a servo. For a
servo with a 270° range, if the input range was from 0 to 1 then a signal input of 0 would cause the servo to
turn to point -135°. For a signal input of 1, the servo would turn to +135°. Inputs between the minimum and
maximum have corresponding angles evenly distributed between the minimum and maximum servo angle.

In this example, you will use the colored buttons on the right side of the F310 controller to control the
position of the servo. Initially, the op mode will move the servo to the midway or neutral position. If we use
the above image of the pulse width range for the servo, this is representative of 0 degrees, but can also be
consider 135 degrees of the full 270 degree range.

Pushing the yellow “Y” button will move the servo to the target position where signal input is 0. Pushing the
blue “X” button or the red “B” button will move the servo to the target position where signal input is 0.5,
which corresponds with the neutral position . Pushing the green “A” button will move the servo to the target
position where signal input is 1.

The following code walkthrough assumes you have already created an op mode and configured
your hardware.

https://docs.revrobotics.com/15mm/actuators/servos/smart-robot-servo
https://docs.revrobotics.com/15mm/actuators/servos/srs-programmer
https://github.com/FIRST-Tech-Challenge/SKYSTONE/wiki/Configuring-Your-Hardware

Blocks

On the left-hand side of the screen click on the category called “Actuators” and look for the
subcategory called “Servos”.

Select the “set servoTest.Position to” block from the list of available Servo blocks.

Drag the “set servoTest.Position to” block to the spot just under the comment block that reads “Put
initialization blocks here.” The block should click into place. Change the number block to read "0.5"
instead of "0"

Click on the “Logic” category of the programming blocks and select the “if do” block from the list of
available blocks. Drag the block to the position immediately after the comment block that reads “Put
loop blocks here.”

Click on the “Gamepad” category of the programming blocks and select the “gamepad1.Y” block
from the list of available blocks.

Drag the “gamepad1.Y” block to the right side of the “if do” block. The block should click into place.

The “if do” block will use the state of the gamepad1.Y value its test condition. If the “Y”
button is pressed, the statements within the “do” portion of the block will be executed.

Select the “set servoTest.Position to” block from the list of available Servo blocks. Drag the “set
servoTest.Position to” block so that it snaps in place in the do portion of the “if do” block.

Click on the blue and white Settings icon for the “if do” block. This will display a pop-up menu that
lets you modify the “if do” block.

Drag an “else if” block from the left side of the pop-up menu and snap it into place under the “if”
block. Drag a second “else if” block from the left side and snap it into place on the right side under
the first “else if” block.

Click on the Settings icon to hide the pop-up menu for the “if do” block. The “if do” block should now
have two “else if” test conditions added.

Click on the “Logic” category and select the logical “and” block. Drag the “and” block so it clicks in
place as the test condition for the first “else if” block.

Click on the word “and” and select “or” from the pop-up menu to change the block to a logical “or”
block.

Click on the “Gamepad” category and select the “gamepad1.X” block. Drag the block so that it clicks
in place as the first test condition of the logical “or” block. The select the "gamepad1.B" and drag it
into the second test condition of the "or" bloc

Select a “set servoTest.Position to” block and place it into “do” clause of the first else-if block.
Highlight the number “0” and change it to “0.5”. With this change, if the user presses the “X” button or
“B” button on gamepad #1, the op mode will move the servo to the neutral position.

Use a “gamepad1.A” block as the test condition for the second “else if” block. Drag a “set
servoTest.position to” block to the do clause of the second “else if” block and modify the numeric
value so that the servo’s position will be set to a value of 1.

Insert a “call telemetry.addData” block (numeric) before the “call Telemetry.update” block. Rename
the key field to “Servo Position” and insert a “servoTest.Position” block for the number field.

This set of blocks will send the current servo position value to the Driver Station while the op mode is
running.

OnBot Java

In order to cover the three positions discussed in the scenario above and If/else statement needs to
be utilized.

If/else statements need to have a condition in order to choose which part of the statement gets
triggered. In this case the servo needs to move to position 0 when the "Y" button is pressed.

if(gamepad1.y) {1
 // move to -135 degrees.2
 servoTest.setPosition(0);3

The gamepad1.y looks for a press of the y button on gamepad #1. The line servoTest.setPosition(0);
is setting the position of the servo "servoTest" to 0.

This process can be mostly replicated to apply to the other buttons and other positions in the
example using "else if". However, the example asks that both the "X" and "B" be assigned to position
0.5. Which means that the logical or "||" needs to be used to signify that if button "X" or button "B" is
pressed.

if(gamepad1.y) {1
 // move to -135 degrees.2
 servoTest.setPosition(0);3
 } else if (gamepad1.x || gamepad1.b) {4
 // move to 0 degrees.5
 servoTest.setPosition(0.5);6
 } else if (gamepad1.a) {7
 // move to + 135 degrees.8
 servoTest.setPosition(1);9
 }10

If you are following along with the full guide for the "MyFIRSTOpMode" the following code works the
servo code into the full op mode.

// run until the end of the match (driver presses STOP)1
double tgtPower = 0;2
while (opModeIsActive()) {3
 tgtPower = -this.gamepad1.left_stick_y;4
 motorTest.setPower(tgtPower);5
 // check to see if we need to move the servo.6
 if(gamepad1.y) {7
 // move to -135 degrees.8
 servoTest.setPosition(0);9
 } else if (gamepad1.x || gamepad1.b) {10

 // move to 0 degrees.11
 servoTest.setPosition(0.5);12
 } else if (gamepad1.a) {13
 // move to + 135 degrees.14
 servoTest.setPosition(1);15
 }16
 telemetry.addData("Servo Position", servoTest.getPosition());17
 telemetry.addData("Target Power", tgtPower);18
 telemetry.addData("Motor Power", motorTest.getPower());19
 telemetry.addData("Status", "Running");20
 telemetry.update();21

22
}23

This added code will check to see if any of the colored buttons on the F310 gamepad are pressed.
The op mode will also send telemetry data on the servo position to the Driver Station.

Saving or Building and Op Mode

Blocks

After you have modified your op mode, it is very important to save the op mode to the Robot
Controller.

It will take an estimated 1 minute to complete this task.

Press the “Save Op Mode” button to save the op mode to the Robot Controller. If your save was
successful, you should see the words “Save completed successfully” to the right of the buttons.

OnBot Java

When you create or edit an op mode the OnBot Java editor will auto-save the .java file to the file
system of the Robot Controller. However, before you can execute your changes on the Robot
Controller, you must first build the op mode and convert it from a Java text file to a binary that can be
loaded dynamically into the FTC Robot Controller app.

If you are satisfied with your op mode and are ready to build, press the Build button (which is the
button with the wrench symbol, see image below) to start the build process. Note that the build
process will build all of the .java files on your Robot Controller.

You should see messages appear in the message pane, which is located in the lower right hand side
of the window. If your build was successful, you should see a “Build succeeded!” message in the
message pane.

Once you have built the binary files with your updated op modes, they are ready to run on the Robot
Controller.

Troubleshooting Common Issues

One of the key aspects of troubleshooting is understanding the most common issues that occur in a system.
Because of the structural differences of the languages; the common issues in Blocks and OnBot Java differ.

Blocks self contained syntax reduces the amount of potential syntax errors that are typically a part of
programming. The two major Blocks errors relate to save issues.

In contrast, most major errors with OnBot Java relate to syntax. This section will cover what potential error
codes will appear with even small changes in syntax.

Blocks

"Save Project Failed, Error code 0."

If you attempt to save the op mode that you are currently editing, but you receive an error message
indicating that the “Save project failed. Error code 0.” you might have not be connected to the blocks
programming mode sever.

To correct this issue, you will need to reconnect to the blocks programming server on the Control Hub.

1. Make sure that your laptop is connected to the blocks programming mode Wi-Fi network
2. Press the “Save Op Mode” button again to re-attempt the save operation.

Op Mode Blocks are Missing

If you have opened an existing op mode to edit it in your Javascript-enabled browser, but the
programming blocks are missing, check the following:

1. Did you remember to save the op mode the last time you edited and then exited the op mode? If
you did not save the op mode after the last editing session, you might have lost some of your
changes.

2. Are the blocks collapsed and/or in an area of the design “canvas” (or design pane) that is outside
your current browser window? If so, you can use the expand and cleanup functions of the blocks

programming tool, seen in the images below" to expand all of the blocks on your screen and to
organize them in an easy-to-view (and easy-to-find) manner.

OnBot Java

Troubleshooting Build Messages

In the previous section, the build process went smoothly. Let’s modify your op mode slightly to cause
an error in the build process.

In the editing pane of the OnBot Java window, look for the line that reads “private Servo servoTest;”.
This should appear somewhere near the beginning of your op mode class definition. Change the
word “Servo” to the word “Zervo”:

private Zervo servoTest;

Also, let’s modify the telemetry statement that informs the user that the op mode has been initialized,
and let’s remove one of the two arguments so that the statement looks like this:

telemetry.addData("Status",);

Note that when you eliminate the second argument, a little “x” should appear next to the line with the
modified addData statement. This “x” indicates that there is a syntax error in the statement.

After you have modified your op mode, you can press the build button and see what error messages
appear.

When you first attempt to build the op mode, you should get an “illegal start of expression error”. This
is because the addData method is missing its second argument. The OnBot Java system also directs
you to the file that has the error, and the location within the file where the error occurs.

In this example, the problem file is called
“org/firstinspires/ftc/teamcode/MyFIRSTJavaOpMode.java” and the error occurs at line 62, column
37. It is important to note that the build process builds all of the .java files on the Robot Controller. If
there is an error in a different file (one that you are not currently editing) you will need to look at the
file name to determine which file is causing the problem.

Let’s restore this statement back to its original, correct form:

telemetry.addData("Status", "Initialized");

After you have corrected the addData statement, push the build button again to see what happens.
The OnBot Java system should complain that it cannot find the symbol “Zervo” in a source file called
“org/firstinspires/ftc/teamcode/MyFIRSTJavaOpMode.java” at line 51, column 13.

You should restore the statement back to its original form and then push the build button and verify
that the op mode gets built properly.

private Servo servoTest;

Using Encoders

Basic Encoder Concepts

Each motor designed by REV has an encoder built into it that keeps track of its rotation. To use it, you must
have a 4-pin JST PH cable connecting the motor to the Control Hub (REV-31-1595) or Expansion Hub (REV-
31-1153), next to the 2-pin JST VH cable used to provide power to the motor.

Encoder values are measured in “ticks.” Different motors have different numbers of ticks per rotation of the
output shaft based on the gear ratio of the motor. When the Control Hub is turned on, all of its encoder ports
are at 0 ticks. As a motor moves forward, its encoder value increases. As a motor moves backwards, its
encoder value decreases.

For more information see the section on encoders.

Choosing a Motor Mode

Your programs can always access the encoder values directly, but you can also direct the Control Hub to use
the encoder values to maintain a motor’s speed, or maintain a particular position. You do this by changing
the motor’s mode.

It is recommended to use the latest Control Hub and Expansion Hub firmware before using
RUN_USING_ENCODER mode or RUN_TO_POSITION mode.

STOP_AND_RESET_ENCODER Mode

Place a motor in this mode when you want to set its encoder position back to 0. The motor will stop. To start
it again, you need to place the motor into one of the other three modes. It is recommended to place each
motor you will be using encoders with into this mode at the start of each program, so that you know what
position the motor is starting out in.

RUN_WITHOUT_ENCODER Mode

Use this mode when you don’t want the Control Hub to attempt to use the encoders to maintain a constant
speed. You can still access the encoder values, but your actual motor speed will vary more based on external
factors such as battery life and friction. In this mode, you provide a power level in the -1 to 1 range, where -1
is full speed backwards, 0 is stopped, and 1 is full speed forwards. Reducing the power reduces both torque
and speed.

https://www.revrobotics.com/rev-31-1595/
https://www.revrobotics.com/rev-31-1153/

Blocks

This mode is a good choice for drivetrain motors driven by joysticks on the gamepad.

RUN_USING_ENCODER Mode

In this mode, the Control Hub will use the encoder to take an active role in managing the motor’s speed.
Rather than directly applying a percentage of the available power, RUN_USING_ENCODER mode targets a
specific velocity (speed). This allows the motor to account for friction, battery voltage, and other factors.

This mode is a good choice for operations, like a flywheel, that require a specific speed and can
use buttons on a gamepad for control.

RUN_TO_POSITION Mode

In this mode, the Control Hub will target a specific position, rather than a specific velocity. You still set a
velocity, but it is only used as the maximum velocity. The motor will continue to hold its position even after it
has reached its target.

This mode is a good choice for operations, like an arm, that require a specific position and can
use buttons on a gamepad for control.

Reading the Encoder Value

In Blocks, you access the current encoder value by using the DcMotor CurrentPosition block.

Java

In Java, you access the current encoder value by calling getCurrentPosition() on a DcMotor or

DcMotorEx object. This sample program prints the encoder value for a motor configured with the
name “Motor” to telemetry:

package org.firstinspires.ftc.teamcode;1
// import lines were omitted. OnBotJava will add them automatically.2

3
@TeleOp4
public class JavaEncoderTest extends LinearOpMode {5
 DcMotorEx motor;6
 7
 @Override8
 public void runOpMode() {9
 motor = hardwareMap.get(DcMotorEx.class, "Motor");10
 waitForStart();11
 while (opModeIsActive()) {12
 telemetry.addData("Encoder value", motor.getCurrentPosition());13
 telemetry.update();14
 }15
 }16
}17

Setting the Motor Mode

Blocks

Java

In Blocks, you set the motor’s mode with this block. You can select different modes from its
dropdown menu.

Here is a snippet of code that demonstrates how to do the same thing in Java. You can skip the first
line if you already have retrieved the motor object from hardwareMap. Change
RUN_WITHOUT_ENCODER to the desired motor mode (STOP_AND_RESET_ENCODER,
RUN_WITHOUT_ENCODER, RUN_USING_ENCODER, or RUN_TO_POSITION).

DcMotorEx motor = hardwareMap.get(DcMotorEx.class, "Motor");1
motor.setMode(DcMotor.RunMode.RUN_WITHOUT_ENCODER);2

Using RUN_WITHOUT_ENCODER

The RUN_WITHOUT_ENCODER motor mode is very straightforward, you simply set a power in the range of
-1.0 to 1.0. However, if you try to set a velocity (which will be covered later on), the motor will automatically
be switched into RUN_USING_ENCODER mode.

Blocks

Java

The power level is set in Blocks mode using this block:

The power level is set in Java by calling setPower() on a DcMotor or DcMotorEx object, as is

shown in this snippet. You can skip the first two lines if you already have retrieved the motor object
from hardwareMap and set the mode to RUN_WITHOUT_ENCODER.

DcMotorEx motor = hardwareMap.get(DcMotorEx.class, "Motor");1
motor.setMode(DcMotor.RunMode.RUN_WITHOUT_ENCODER);2
// This will run the motor forward at half-power3
double motorPower = 0.5;4
motor.setPower(motorPower);5

Using RUN_USING_ENCODER

In RUN_USING_ENCODER mode, you should set a velocity (measured in ticks per second), rather than a
power level. You can still provide a power level in RUN_USING_ENCODER mode, but this is not recommended,

Blocks

Java

as it will limit your target speed significantly. Setting a velocity from RUN_WITHOUT_ENCODER mode will
automatically switch the motor to RUN_USING_ENCODER mode. You should pick a velocity that the motor
will be capable of reaching even with a full load and a low battery.

Providing a velocity is an extended motor feature, which means that the block for it is located under
DcMotor > Extended. You can see it here:

The velocity is set in Java by calling setVelocity() on a DcMotorEx object, as is shown in this

snippet. You can skip the first two lines if you have already retrieved the motor object as a DcMotorEx
from hardwareMap and set the mode to RUN_USING_ENCODER.

DcMotorEx motor = hardwareMap.get(DcMotorEx.class, "Motor");1
motor.setMode(DcMotor.RunMode.RUN_USING_ENCODER);2
// This will turn the motor at 200 ticks per second3
double motorVelocity = 200;4
motor.setVelocity(motorVelocity);5

Using RUN_TO_POSITION

To use RUN_TO_POSITION mode, you need to do the following things in this order:

1. Set a target position (in ticks)

2. Switch to RUN_TO_POSITION mode
3. Set the maximum velocity

You should reset the encoders (switch to STOP_AND_RESET_ENCODER mode) during initialization when you
use RUN_TO_POSITION mode. If you are using it with a mechanism such as a lift, you have to be careful to
make sure that you always have the motor in the same physical location when you reset the encoders, or
else your target position won’t mean the same thing between runs.

The motor will continue to hold its position even after it has reached its target, unless you set the velocity or
power to zero, or switch to a different motor mode.

The following examples assume that the motor used is a Core Hex Motor. If it is a motor that has a more
precise encoder, such as an HD Hex Motor, higher velocity and target position values will be more
appropriate.

Blocks

Here is a complete Blocks program that uses RUN_TO_POSITION.

If you want to wait for the motor to reach its target position before continuing in your program, you
can use a while loop that checks if the motor is busy (not yet at its target):

Java

package org.firstinspires.ftc.teamcode;1
// import lines were omitted. OnBotJava will add them automatically.2

3
@TeleOp4
public class JavaRunToPositionExample extends LinearOpMode {5
 DcMotorEx motor;6
 7
 @Override8
 public void runOpMode() {9
 motor = hardwareMap.get(DcMotorEx.class, "Motor");10
 11
 // Reset the encoder during initialization12
 motor.setMode(DcMotor.RunMode.STOP_AND_RESET_ENCODER);13
 14
 waitForStart();15
 16
 // Set the motor's target position to 300 ticks17
 motor.setTargetPosition(300);18
 19
 // Switch to RUN_TO_POSITION mode20
 motor.setMode(DcMotor.RunMode.RUN_TO_POSITION);21
 22
 // Start the motor moving by setting the max velocity to 200 ticks per seco23
 motor.setVelocity(200);24
 25
 // While the Op Mode is running, show the motor's status via telemetry26
 while (opModeIsActive()) {27
 telemetry.addData("velocity", motor.getVelocity());28
 telemetry.addData("position", motor.getCurrentPosition());29
 telemetry.addData("is at target", !motor.isBusy());30
 telemetry.update();31
 }32
 }33
}34

If you want to wait for the motor to reach its target position before continuing in your program, you
can use a while loop that checks if the motor is busy (not yet at its target):

// Loop while the motor is moving to the target1
while(motor.isBusy()) {2
 // Let the drive team see that we're waiting on the motor3
 telemetry.addData("Status", "Waiting for the motor to reach its target");4
 telemetry.update();5
}6
// The motor has reached its target position, and the program will continue7

Sensors

Introduction to Sensors

Sensor Basics

Aptly named, sensors are integral to how your robot understands the world around it. For instance, maybe
you have noticed your teammates lunch box is green, a color sensor would allow your robot to notice the
same thing. Color isn't the only sense your robot has! Robots use sensors to collect various types of
information about their environment. The following list is just some of the scenarios where sensors are
needed.

Scenarios where a sensor is needed:

The robot needs to autonomously move to a specific location and stop there.
The robot needs to move forward at a green signal and stop moving at a red signal.
The robot has an arm that needs to be prevented from rotating too far or it may damage other parts of
the robot.
The robot needs to stop 1 meter away from an opaque wall.
The robot needs to be able to tell how many game objects it is currently holding inside it’s hopper.

Different Sensor Types and Uses

In The REV Robotics Control System, sensors are classified as beginner, intermediate, or advanced. This
division among sensors is based on programming complexity. Beginner sensors can typically be coded
using an if/else statement. Intermediate sensors, like the IMU, require a higher level understanding of
programming. Advanced sensors require advanced knowledge of programming. Visions sensors and
encoders are considered advanced.

Beginner

In the REV Robotics Control System, both Analog and Digital sensors are considered beginner sensors.
Analog and digital sensors log changes in state as changes in Voltage. Digital sensors, like the touch sensor,
report voltage changes along a binary. With digital sensors the voltage is typically 0v or 3.3v. Whereas
analog sensors are similar to an adjustable resistor and they report a range of voltages between 0v to 3.3v.

Some sensors in the REV Control System are capable of running up to 5v. To learn more about
sensor voltage visit the pages of the individual sensors!

The table below gives the basic usage scenarios for analog and digital sensors

Digital Analog

Gives feedback as either on or off. This
type of sensor is ideal for setting limits of
a mechanism.

Gives feedback as a proportional voltage range. This type of
sensor is ideal for knowing exactly where a mechanism is, like
a dial on a radio.

Digital Sensors

Touch Sensor : A sensor with a button. The button press can be used to trigger actions like stopping
motors.
Magnetic Limit Switch: A sensor that detects magnetic fields. When there is sufficient field strength of
either magnetic pole detected the sensor is triggers and a limit of movement can be established.

Analog Sensors

Potentiometer: The Potentiometer senses the angular position of a shaft.

Intermediate

I2C sensors are considered intermediate because they give feedback through two-way communication with
a robot controller. These types of sensors allow for more complex data to communicate to the robot, such as
color values of an object.

IMU: The IMU incorporates three sensors: a 3-axis accelerometer, a 3-axis gyroscope, and a 3-axis
geomagnetic sensor. This sensor can be used to determine orientation and location of the robot.
Color Sensor: A sensor capable of sensing colors and proximity of objects.
2m Distance Sensor: It is typically used to detect the distance from the sensor to other opaque objects.

Advanced

The two types of advanced sensors in the REV Control system are Vision sensors and Encoders.

Vision Encoders

Gives feedback as images to the
robot controller. These types of
sensors require the use of image
processing software, like VuForia,
to use to their full potential.

An Encoder, in the context of robotics, is a type of digital sensor that
converts rotary motion into digital signal. These type of sensors
require “decoding” to get this information into a usable form. The
Control Hub and Expansion Hub have built in decoding through the
“Encoder Ports” under the motor ports.

Integrated Sensors

The REV Robotics Control Hub (REV-31-1595) and Expansion Hub (REV-31-1153) integrate a number of
feedback sensors. Some of these are user accessible in the latest FTC Android Studio SDK, but others are
not yet directly user accessible. These sensors are in some cases also used by the Control Hub and
Expansion Hub for internal safety monitoring.

Battery Voltage Monitoring [Accessible]
Integrated 9-axis IMU [Accessible]

Bosch BNO055 9-axis absolute orientation sensor
Internally connected to I2C port 0 and configured to address 0x28

Current Monitoring
Battery [Accessible]
I2C Bus [Accessible]
Digital Power Bus [Accessible]
Servo Power Bus [Not Accessible]

Per Motor Channel Current Monitoring [Accessible]

https://www.revrobotics.com/rev-31-1595/
https://www.revrobotics.com/rev-31-1153/

Digital

Digital Sensor Basics

Digital sensors give digital feedback to your robot controller along a type of binary. In the case of digital
sensors the binary is on/off, somewhat similar to a light switch.

True/False is another well known binary in programming. Binary information can be thought of
as either/or. A statement is either true or it is false. A limit switch is either on or it is off.

The main difference between a light switch and a digital sensor is that a digital sensor has a default state.
When an action outside of the default state occurs, like a touch sensor being pressed, an event within the Op
Mode is triggered and the robot reacts accordingly.

There are two digital sensors available through REV: Touch (REV-31-1425) and Magnetic Limit Switch (REV-
31-1462)

Configuring Digital Sensors

Each Digital Port on the Control Hub (REV-31-1595) or Expansion Hub (REV-31-1153)
 has two channels for communication. This allows for wiring of two sensors per port when using the sensor
splitter cable .

The touch sensor has certain specifications that affect how you use the sensor splitter cable.
Please see the touch sensor page for more information.

Both the touch sensor and the magnetic limit switch are configured as a “REV Touch Sensor or Magnetic
Limit Switch” on the Digital Devices configuration screen. While the magnetic limit switch can be configured
on any port, a touch sensor will only work if it is configured on port 1, 3, 5, or 7.

The Touch Sensor is attached to digital port 1, and the Magnetic Limit Switch is attached to digital port 2.

https://www.revrobotics.com/rev-31-1425/
https://www.revrobotics.com/rev-31-1462/
https://www.revrobotics.com/rev-31-1595/
https://www.revrobotics.com/rev-31-1153/
https://www.revrobotics.com/rev-31-1386/

The digital ports son the Control hub look like this:

Touch

Touch Sensor Basics

The REV Robotics Touch Sensor (REV-31-1425) is a digital sensor that can as a button input or as a basic
mechanical limit switch. The touch sensor is similar to a keyboard button, when the button is pressed the
touch sensor notifies the Control (REV-31-1595) or Expansion Hub (REV-31-1153) and an action in the code
is triggered. Sometime this action may stop the motors or reset the encoder angle, depending on use case.

Like all digital sensors, the Touch Sensor acts on a binary. When the button is not pressed, the LED light
remains unlit and the value read by the Expansion Hub is 3.3V (high) and when the button is pressed the
LED will light and the Expansion Hub will read 0V (Low).

How to Use?

Application

The touch sensor applications are very straight forward and easy to use. Two common examples are a
bumper and a limit switch. In the bumper scenario, the sensor is mounted behind a hinged plate. When the
plate is bumped the touch sensor is pressed and an action, set in the code, is triggered.

The limit switch is slightly different. The touch sensor can be placed in relation to an arm, or other
mechanism, to act as a limit, or stopping point. The limit switch function can help mechanism from over
extending/breaking or can act as reset point for encoders so that the point where the arm and the touch
sensor meet is always 0.

https://www.revrobotics.com/rev-31-1425/
https://www.revrobotics.com/rev-31-1595/
https://www.revrobotics.com/rev-31-1153/

Blocks

Installation and Configuration

The sensor can be attached to channel or extrusion using 8mm M3 Hex Cap Screws (REV-41-1359).

In the image below, is the key for the wired connection between the touch sensor and the robot controller.
The touch sensor does not use or pick up a signal from the n (blue) wire. This is not a problem if there ish
one digital sensor per port. However, If you intend to connect more than one digital sensor to the same port
using the sensor splitter cable, make sure that the n+1 (white) wire portion of the splitter cable is plugged
into the touch sensor.

Programming Example

The code blocks below gives a basic example of how to use the touch sensor using if/else logic. If the touch
sensor is pressed then the motor stops. Otherwise the motor moves.

https://www.revrobotics.com/rev-41-1359/

Java

The code assumes the sensor has been named "Touch" and the motor has been named
"Motor" in configuration.

package org.firstinspires.ftc.teamcode;1
 2
import com.qualcomm.robotcore.eventloop.opmode.LinearOpMode;3
import com.qualcomm.robotcore.hardware.TouchSensor;4
import com.qualcomm.robotcore.eventloop.opmode.TeleOp;5
import com.qualcomm.robotcore.hardware.DcMotor;6
 7
@TeleOp8
public class TouchTest extends LinearOpMode {9
 // Define variables for our touch sensor and motor10
 TouchSensor touch;11
 DcMotor motor;12
 13
 @Override14
 public void runOpMode() {15
 // Get the touch sensor and motor from hardwareMap16
 touch = hardwareMap.get(TouchSensor.class, "Touch");17
 motor = hardwareMap.get(DcMotor.class, "Motor");18
 19
 // Wait for the play button to be pressed20
 waitForStart();21
 22
 // Loop while the Op Mode is running23
 while (opModeIsActive()) {24
 // If the touch sensor is pressed, stop the motor25
 if (touch.isPressed()) {26
 motor.setPower(0);27
 } else { // Otherwise, run the motor28
 motor.setPower(0.3);29
 }30
 }31
 }32
}33

34

Magnetic Limit Switch

Magnetic Limit Switch Basics

The REV Robotics Magnetic Limit Switch (REV-31-1462) is a three-sided digital hall effect switch. The three
internal hall effect elements (one on top, two on the sides) are connected in parallel so if any one of them is
triggered the sensor will report as triggered.

Hall effect sensors detect the presence of a magnetic fields. The REV Magnetic Limit Switch is an
omnipolar momentary switch; it will trigger when there is sufficient field strength of either magnetic pole
detected.

Nearly all motorized mechanisms (such as arms and elevators) in robotics should be given some
form of “limit switch” to prevent them from damaging themselves at the end of their range of
motions.

When the sensor gets close to one of the poles the signal voltage voltage is zero, which means the sensor is
"pressed". When it reports 3.3v its is outside of the magnetic field and is "not pressed."

Product Specs

Sensor Type: Digital, Active-low
Voltage Range: 3.3V - 5.0V
Signal: n & n+1

https://www.revrobotics.com/rev-31-1462/

Magnetic Polarity: Omnipolar (both north & south)
Typical Trigger Distance*
Top: 10mm
Side: 5mm
Typical Hysteresis: 5mm
Typical Included Magnet Strength: 4300G (0.43T)

How to Use?

Application

When designing a system using the REV Magnetic Limit Switch it is important to consider in the impact of
hysteresis. When the magnetic field approaches the Magnetic Limit Swtich, after the field strength increases
enough that it crosses the rising trigger point (Bop) the sensor triggers. As the magnet is then moved away
from the sensor, the magnetic field strength falls but the sensor remains in the triggered state until the field
falls below the falling trigger level (BRP). The difference between these two points is the hysteresis.

The strength of the magnetic field determines the maximum distance the magnet can be from the sensor
and still be detected. Alternate (stronger or weaker) magnets can easily be used to change the trigger range
of this sensor.

Installation and Configuration

The sensor portion of the Magnetic Limit switch and the two magnets and M3 Hardware compatible and
can be attached to any extrusion or channel structural element.

The Magnetic Limit Switch can send signal from either the n+1 or n ports. The REV Magnetic Limit Switch
comes with two mountable magnets. Because this sensor does not require a contact interface, the magnet
can also be soft mounted almost anywhere with just tape or glue.

https://www.revrobotics.com/ftc/hardware/fasteners/

For a simple system like stopping an arm at the end of range of motion, the hysteresis might not
play much of a role, but for creating one or more stop points on a linear elevator, this may factor
into the software design

Analog

Analog Sensor Basics

Analog sensors act as a type of adjustable resistor. As the state of the sensor changes, the voltage reporting
back to the robot changes as well. Think of a dimmer switch, the brightness of the lights in the room
depends on the where the setting of the knob of slider is. As the knob is adjusted the resistance level adjusts
proportionally and the light continuously changes to the output from the knob.

Can you think of anything that act like analog sensors around your household? Here are some we
thought of: scale, thermometer, volume knob

Unlike the binary (either/or) status of digital sensors, analog sensors consider all numbers within a specific,
given range. When using an analog sensor the actionable trigger will typically be some range like, between
1.2 and 2.2 volts or greater than 0.5 volts.

REV Robotics offers one analog sensor, known as a Potentiometer (REV-31-1155). The Potentiometer can
be used to sense or measure the angular position of an shaft.

To learn more about using the potentiometer check the potentiometer page.

Configuring Analog Sensors

Each Analog Port on the Control Hub (REV-31-1595) or Expansion Hub (REV-31-1153) has two channels for
communication. However, a potentiometer can only be configured to channels 0 or 2; so it is not possible to
connect two potentiometers on the same port.

Some analog sensors from other companies will work with with the Control and Expansion Hub
Analog Ports with the use of a custom wiring harness. Check out the Using 5v Sensor section for
more information.

Configuring the potentiometer is simple. In the active configuration select the port being utilized, in this case
it is port 0, and choose "Analog Input."

https://www.revrobotics.com/rev-31-1155/
https://www.revrobotics.com/rev-31-1595/
https://www.revrobotics.com/rev-31-1153/

Potentiometer

Potentiometer Basics

The Potentiometer (REV-31-1155) senses the angular position of a shaft. It allows information about
position to be converted into an analog voltage signal. This signal can be read by the Control Hub (REV-31-
1595) or Expansion Hub (REV-31-1153) to control whatever device is attached. A potentiometer is essentially
an adjustable resistor that fluctuates resistance as the shaft is turned. When connected to the Control Hub
or Expansion Hub, the potentiometer is placed between ground and 3.3V. As the wiper (the knob) moves up
and down along the coils of the resistor and the resistance and voltage output change proportionally at each
new position.

The Potentiometer has a 270° limit to rotation. The sensor detects how much rotational motion has occurred
in a mechanism. A specific limit is set in code to ensure rotation stops at a certain point. This is helpful
when building simple arm joints because if properly applied it can prevent a mechanism from damaging
itself or other parts of the robot.

It is important to install the Potentiometer so that it will not be forced beyond its 270° range of
motion.

Product Specs

Sensor Type: Analog
Signal Port Mapping: n
Total Resistance: 10kΩ
Range of Motion: 270°
Electrical Connection: 4-pin JST PH
Output Shaft: Female 5mm Hex
Mounting Holes: 6x M3 Tapped

https://www.revrobotics.com/rev-31-1155/
https://www.revrobotics.com/rev-31-1595/
https://www.revrobotics.com/rev-31-1153/

How to Use?

Applications

Potentiometers are most commonly used to measure the angle of an arm type joint. There are two different
ways to utilize a potentiometer when using it in conjunction with an arm. One way to use the potentiometer
is to directly place it on the shaft being used to pivot the arm. However, placing the potentiometer on an
adjacent shaft that connects to the pivot-point shaft, via gears or chain, allows for more design flexibility.

Applying the concept of gear ratios (or sprocket ratios) to the potentiometer; it is possible to manipulate the
accuracy/range of motion relationship. When range of motion increases, through changes in gear ratio,
accuracy decreases and vice versa.

Calculating the relationship of voltage and angle

Keeping in line with the arm example, it is suggested to use a initialization routine at the start of an Op mode
that reads of adjusts the voltage of the potentiometer. This is helpful in scenarios where an arm is in a
known starting position or should be.

The general calculation for Degrees/Volts is as follows:

 or 8.18° per tenth of a volt270°/3.3V = 270°/3300mV = 0.082°/mV

Installation and Configuration

The REV Potentiometer mounts to any REV Bracket with the 6 hole motion pattern. The bracket then is
mounted to extrusion or channel. The sensor is attached to the bracket and the bracket to the extrusion or
channel using 8mm M3 Hex Cap Screws (REV-41-1359).

This Potentiometer has a 5mm female hex socket input and can be used with any 5mm hex axle, like the
ones in the REV Building system. There are six M3 tapped holes around the input shaft on a 16mm circle
with will mount to any of the REV Robotics Motion Brackets.

The Potentiometer only sends signal to the hub through the n port, which means during configuration the
potentiometer will need to be assigned to port 0 or port 2.

https://www.revrobotics.com/rev-41-1359/

To learn more about configuring the potentiometer head back to the analog page.

Programming Example

This program has a variable called CurrentVoltage that is used to store the current voltage. CurrentVoltage is
updated using the AnalogInput block every time that the program loops. When CurrentVoltage less than the
midpoint of 1.65 volts, the motor stops. When the voltage is higher than the midpoint, the motor moves. The
potentiometer voltage is also displayed via telemetry.

Blocks

Java

The code assumes that a Potentiometer was configured with the name “Potentiometer”,
and that a motor was configured with the name “Motor”.

package org.firstinspires.ftc.teamcode;1
 2
import com.qualcomm.robotcore.eventloop.opmode.LinearOpMode;3
import com.qualcomm.robotcore.hardware.AnalogInput;4
import com.qualcomm.robotcore.eventloop.opmode.TeleOp;5
import com.qualcomm.robotcore.hardware.DcMotor;6
 7
@TeleOp8
public class PotentiometerTest extends LinearOpMode {9
 // Define variables for our potentiometer and motor10
 AnalogInput potentiometer;11
 DcMotor motor;12
 13
 // Define variable for the current voltage14
 double currentVoltage;15
 16
 @Override17
 public void runOpMode() {18
 // Get the potentiometer and motor from hardwareMap19
 potentiometer = hardwareMap.get(AnalogInput.class, "Potentiometer");20
 motor = hardwareMap.get(DcMotor.class, "Motor");21
 22
 // Loop while the Op Mode is running23
 waitForStart();24
 while (opModeIsActive()) {25
 // Update currentVoltage from the potentiometer26
 currentVoltage = potentiometer.getVoltage();27
 28
 // Turn the motor on or off based on the potentiometer’s position29
 if (currentVoltage < 1.65) {30
 motor.setPower(0);31
 } else {32
 motor.setPower(0.3);33
 }34
 35
 // Show the potentiometer’s voltage in telemetry36
 telemetry.addData("Potentiometer voltage", currentVoltage);37
 telemetry.update();38
 }39
 }40
}41

42

I2C

I2C Sensor Basics

I2C is a common electronic communication standard that allows a leader device, the Hubs, to communicate
with multiple devices, followers, attached to the same port. Each connector on a Hub is a separate I2C bus
and many different sensors can be connected to each of the four I2C busses available on both the Control
Hub and Expansion Hub. Every I2C follower device has an unique address, a number, which is normally fixed
by the manufacturer.All of the devices on an individual I2C bus must have a unique address so that the
master can communicate with one sensor at a time. If two devices have the same address, such as when
using two of the same kind of sensor, they must be used on different I2C busses.

There are three I2C sensors within the REV system: IMU, color, and 2m Distance. The IMU sensor is built in to
the Control Hub (REV-31-1595) and Expansion Hub (REV-31-1153).

Configuring I2C Sensors

The I2C Bus 0 hosts the internal IMU sensor within the Hubs. A REV Robotics Color Sensor (REV-31-1557) or
a 2m Distance Sensor (REV-31-1505) can be added to I2C Bus 0. The steps below walk through adding a
color sensor to Bus 0.

The REV Robotics Color and 2m Distance Sensors share the same address. In order to have
proper functionality of both sensors they should be configured to different buses.

Step 1: Click I2C Bus 0 to launch the configuration screen. As you can see the IMU sensor is already
configured to this bus.

https://www.revrobotics.com/rev-31-1595/
https://www.revrobotics.com/rev-31-1153/
https://www.revrobotics.com/rev-31-1557/
https://www.revrobotics.com/rev-31-1505/

Step 2: Press the Add button to add the Color Sensor to this bus. Select "REV Color/Range Sensor" from the
drop down menu and name the device.

Step 3: When you have finished configuring the sensor hit 'Done.' The app will return to the previous screen.

IMU

IMU Basics

Every REV Robotics Control Hub (REV-31-1595) and Expansion Hub (REV-31-1153) have a built in 9-axis
IMU, or inertia measurement unit. The IMU incorporates three sensors: a 3-axis accelerometer, a 3-axis
gyroscope, and a 3-axis geomagnetic sensor. The accelerometer measures the affect of forces on
acceleration along the three axes. The gyroscope measures the rotational location of the the Hubs along
the axes. The geomagnetic sensor (or magnetometer) uses the Earth's magnetic field to find orientation.

The accuracy of the magnetometer within the IMU is affected by proximity to surrounding
magnetic fields.

The data considered and used by the IMU includes: rotation along each axis, forces of acceleration along
each axis, and magnitude of acceleration. The rotational measurements for the gyroscope play an important
part in the use of the gyroscope for positioning and location of the robot.

Heading is the measure of rotation along the z-axis. If the Hub is laying flat on a table, the z-axis points
upwards through the front plate of the Hub.
Pitch is the measure of rotation along the x-axis. The x-axis is the axis that runs from the bottom of the
hub, near the servo ports, to the top of the hub ,where the USB ports are.
Roll is the measure along the y-axis. The y-axis is the axis that runs from the sensor ports on the right to
the motor ports on the left.

The orientation of the hub plays a large part into which measurement will be used to determine the
orientation of the robot as it moves.

https://www.revrobotics.com/rev-31-1595/
https://www.revrobotics.com/rev-31-1153/

Product Specifications

I2C Address: 0x28
Port: 0

How to Use?

Application

There are a multitude of applications for the IMU within autonomous op modes:

Use the Gyroscope to drive in the straight lines and turn during autonomous
Use the Accelrometer in conjunction with the gyroscope to avoid drift and give an approximation of
position/travel
Use the IMU with motor encoders to track and determine robot placement on a field

Configuration

Since the IMU is already installed with in the Control or Expansion Hub the main concerns are Hub position
and configuration. The orientation of the Hub affects which axis is getting feedback.

The IMU always exists on I2C Bus 0.

To learn more on how to configure the IMU check out the I2C introduction page.

Color Sensor

Color Sensor Basics

The REV Robotics Color Sensor V3 (REV-31-1557) is a combined color and proximity sensor. From a single
sensor you can measure colors and rough distances to various targets. Version 3 introduces a new sensor
chip from Broadcom due to the end-of-life of the V1/V2 color sensor chip.

Product Specifications

Max. Operating Voltage 3.3V
Sensor Type I2C
I2C Address 0x52
Sensor Part APDS-9151
Measurement Channels Red, Green, Blue, Alpha, and Proximity
Proximity Sensor Range 1cm – 10cm

Features

https://www.revrobotics.com/rev-31-1557/

Digital RGB Color Sensing
IR Proximity Emitter and Detector
Built-in (switchable) white LED
Supports Standard (100kHz) or High Speed (400kHz) I2C

How to Use?

Application

The REV Robotics Color Sensor has two sensing elements: color and proximity.

Color measurements consist of Red, Green, Blue, and Alpha (clear) values. The white LED on the sensor has
a slide switch to turn the LED on or off. Unlit targets are best illuminated with the build-in LED while bright or
light-emitting targets may not require the build-in LED. Color data is best collected within 2cm of the target
for the strongest color differentiation.

Color sensor applications within FTC vary based on season, although it is typically used to find colored
game objects in autonomous mode.

Proximity measurements are based on IR reflectance and can vary depending on lighting conditions and
target reflectivity. The proximity sensor is ideally used to determine if something is in front of the sensor.
While you can receive rough distance data, we recommend using the 2m Distance Sensor (REV-31-1505) or
similar time-of-flight sensor for accurate distance measurement.

Note to users transitioning from Color Sensor V2 to V3: Color values will not be consistent
between V2 and V3 sensors and there are minor changes to the FTC SDK. Be sure to update to
the latest SDK and configure your robot to use the "REV Color Sensor V3".

Installation and Configuration

The sensor can be attached to channel or extrusion using 8mm M3 Hex Cap Screws (REV-41-1359).

https://www.revrobotics.com/rev-31-1505/
https://www.revrobotics.com/rev-41-1359/

To learn how to configure the color sensor on and I2C Bus check out the I2C top page!

Programming Example

This program shows the values from the Color Sensor on your phone. Your team will need to figure out the
logic to use this information in your program. Below there are three examples of different color modes and
their readings. Light Detected mode will read the amount of light on the sensor from 0-1.0. Because the
sensor is close to a surface, the LED in the sensor reads 1.0 in the examples.

Blocks

Java

The code assumes that the Color Sensor was configured with the name “Color.”

package org.firstinspires.ftc.teamcode;1
 2
import com.qualcomm.robotcore.eventloop.opmode.LinearOpMode;3
import com.qualcomm.robotcore.hardware.ColorSensor;4
import com.qualcomm.robotcore.eventloop.opmode.TeleOp;5
 6
@TeleOp7
public class TestColorSensor extends LinearOpMode {8
 // Define a variable for our color sensor9
 ColorSensor color;10
 11
 @Override12
 public void runOpMode() {13
 // Get the color sensor from hardwareMap14
 color = hardwareMap.get(ColorSensor.class, "Color");15
 16
 // Wait for the Play button to be pressed17
 waitForStart();18
 19
 // While the Op Mode is running, update the telemetry values.20
 while (opModeIsActive()) {21
 telemetry.addData("Red", color.red());22
 telemetry.addData("Green", color.green());23
 telemetry.addData("Blue", color.blue());24
 telemetry.update();25
 }26
 }27
}28

29

2m Distance Sensor

Distance Sensor Basics

The 2m Distance Sensor (REV-31-1505) measures distances up to 2 meters with millimeter resolution. It is
typically used to detect the distance from the sensor to other opaque objects. This sensor can measure how
long it takes for the light to bounce off the object it is directed at and return to the sensor. This “time of
flight” measurement is more accurate than sensors that rely on the intensity of reflected light.

Product Specifications

Measurement Range: 5cm - 200cm
Measurement Resolution: 1mm
Field of View: 25°
Laser Type: 940 nm (IR) Class 1
Sensor Type: I2C
Maximum Bus Frequency: 400 kHz
I2C Address: 0x52
Voltage Range: 3.3V - 5.0V
Max. Operating Current: 40 mA

How to Use?

Application

While the REV 2m Distance Sensor produces a significantly more accurate and reliable measurement than
other types of ranging sensors, the following tips will help minimize errors.

https://www.revrobotics.com/rev-31-1505/

A major benefit of the time of flight measurement is that the target’s surface reflectance does not
significantly impact the calculated distance. However, the smallest errors and farthest measurements are
achieved with more reflective targets. Similarly, larger targets are easier to detect because they fill more of
the sensor’s field of view.

Ambient infrared (IR) interference can also affect the measurement distance and quality. The sensor can
produce accurate measurements in sunlit environments, but maximum distance will be reduced. The
following table outlines the typical ranging capabilities of the sensor.

Target Reflectance Indoor Outdoor (overcast)

White (88%) 200 cm 80 cm

Grey (17%) 80 cm 50 cm

Installation and Configuration:

The sensor can be attached to channel or extrusion using 8mm M3 Hex Cap Screws (REV-41-1359).

https://www.revrobotics.com/rev-41-1359/

Blocks

Information on how to configure I2C sensors can be found on the I2C page.

Programming Example

This program moves a motor if there is an object less than 10 centimetres from the distance sensor, and
stops it if there is no object within that range.

Java

The Java version of this program is pasted below. It assumes that the Distance Sensor
was configured with the name “Distance” and that a motor was configured with the name
“Motor.”

package org.firstinspires.ftc.teamcode;1
 2
import com.qualcomm.robotcore.eventloop.opmode.TeleOp;3
import com.qualcomm.robotcore.hardware.DcMotor;4
import org.firstinspires.ftc.robotcore.external.navigation.DistanceUnit;5
import com.qualcomm.robotcore.hardware.DistanceSensor;6
import com.qualcomm.robotcore.eventloop.opmode.LinearOpMode;7
 8
@TeleOp9
public class DistanceTest extends LinearOpMode {10
 DistanceSensor distance;11
 DcMotor motor;12
 13
 @Override14
 public void runOpMode() {15
 // Get the distance sensor and motor from hardwareMap16
 distance = hardwareMap.get(DistanceSensor.class, "Distance");17
 motor = hardwareMap.get(DcMotor.class, "Motor");18
 19
 // Loop while the Op Mode is running20
 waitForStart();21
 while (opModeIsActive()) {22
 // If the distance in centimeters is less than 10, set the power to 0.323
 if (distance.getDistance(DistanceUnit.CM) < 10) {24
 motor.setPower(0.3);25
 } else { // Otherwise, stop the motor26
 motor.setPower(0);27
 }28
 }29
 }30
}31

32

Encoders

What is an Encoder?

An encoder is anything (device, software, person) that converts information from one format(code) into
another. Some examples of encoding include:

A transducer, like a speaker, which converts an electrical signal into music
Software which encodes an audio file into an mp3 to decrease file size
A stenographer (court reporter) takes courtroom dialog and converts it into a written record

This section is about rotary encoders which are electro-mechanical devices which convert the angular
position of a shaft, like on a motor, to an electronic signal. These signals can be fed into a microcontroller,
which controls all robot functions, and then used to provide real world data to make better programming
decisions.

There are two main types of encoders: absolute and relative.

Absolute encoders return the actual angle of the rotation (e.g. 30°). Absolute encoders maintain position
information if the power is removed, and position data is immediately available when power is reapplied
with no rotation needed to read the current angle. The relationship between the encoder value and the motor
shaft is set when assembled and will always stay the same. Commonly these encoders use a specially
printed pattern disk which are read and converted to a known angle. Generally, absolute encoders are easier
to use when programming, but they are more complicated to manufacture so are larger, or more expensive.

Relative encoders, which are also referred to as incremental encoders, provide information about the
motion of the shaft (e.g. forward at 5 RPM), and only provide data while the shaft is rotating. One way to
remember this is that relative encoders return information on the incremental change of the motor output
shaft. Relative encoders only provide pulses as the motor turns, and interpreting these pulses into useful
information must be done externally. A relative encoder does not know what position it is in at start-up, but it
is possible to create a calibration program that must be run at every start-up to obtain reference point to
calculate an angle from.

Encoders measure a real world change (shaft rotation) and convert it to an electrical signal. Two common
ways to do this are using optical or magnetic feedback:

Optical encoders have a disk with a series of either slots or a reflective pattern around the outside which is
attached to the motor shaft. A light shines on or through the disk where the light can pass through or reflect
onto a photodiode (device which produces an electric signal when light shines on it). These sensors can be
very light and compact, but can be very sensitive to anything that might interfere with the light reaching the
photodiode. Finger prints on a reflective disk, or dust from a dirty environment can interfere.

Magnetic encoders have a magnet attached to the shaft of a motor and use Hall effect sensors to detect the
changing magnetic field as the shaft rotates. Magnetic encoders are able to operate in harsh or dirty

Typical Encoder Configuration Installed on the Rear of a Motor

environments.

Magnetic Quadrature Encoders

A 12 pole magnetic quadrature encoder is installed on the rear of both the HD Hex Motor and Core Hex
Motor. The output shaft of the motor extends from the rear of the motor case and a multi-pole permanent
magnet is attached to the shaft. There are two Hall effect sensors, marked ‘A’ and ‘B’, mounted next to the
magnet at 90° to each other. As each of the 12 poles passes across one of the Hall effect sensors, it creates
a change in the magnetic field causing the sensor to generate a measurable voltage signal.

Quadrature encoders are a specific type of relative encoder that have four different output states. If the root
quad-, means four, but there are only two sensors in this encoder, where does the name come from? The
output from the two Hall effect sensors are called “Channel A” and Channel B” respectively; an example of
the output is shown below. In a single period (T), defined as the duration of time of one complete cycle in a
repeating pattern, the timing diagram has four distinct states (see a, b, c, and d below), hence a quadrature
encoder.

Clockwise Quadrature Encoder Output Timing Diagram

The offset from Channel A to Channel B is because the sensors are offset from each other by 90°. As the
motor rotates one sensor will see the change before the other. When the motor shaft rotates clockwise (CW),
Channel A will lead (the edge will rise before) Channel B. When the motor spins counter clockwise (CCW)
Channel A will lag (rise after) Channel B. If there was only one sensor it would still be possible to measure
the number of rotations, but not to detect the direction of the motor.

On HD Hex and Core Hex motors Channel A leads Channel B when positive voltage is applied to
the M+ terminal. However, there are times when this will not hold true in real life. Different
reduction gearboxes, or physically swapping the Channel A and Channel B encoder wires into the
controller, can reverse the relationship between the channels. Keep this in mind when
programming and troubleshooting your robot.

When the encoder is being read by a microcontroller, the two signals are compared to produce a count up
pulse or count down pulse. These pulses are counted as steps forward (CW) or backwards (CCW). Using the
specifications for the encoder being used, a count can be converted to degrees. This information can be
used to drive a robot arm to a specific angle, or tell a robot to drive a certain distance. Both the Control Hub
and Expansion Hub communicate to a microcontroller through the encoder ports.

Encoder Technical Specification Definitions

There is some conflicting terminology difference between encoder suppliers. This document
defines one of the most commonly agreed upon set of terms, however be aware that when

Encoder Cycle

Figure 4: Encoder Output for one Revolution of a 14 CPR Encoder

comparing between encoder specifications from different vendor’s terms may vary in meaning.

Every time the output goes through all four distinct combinations of output signals, it’s called a cycle (see a,
b, c, and d below). Encoders have a different cycles-pre-revolution(CPR) based on the number of poles on
the magnet used. The CPR is how many cycles are generated for one complete revolution of the encoder
shaft.

An example output from one complete rotation of a 14 CPR encoder is shown in in the figure below. A 14
CPR rotation encoder may also be referred to as having 14 rises on channel A. Encoders are mounted to the
motor shaft, not the gearbox output shaft, so for a motor with a reduction gearbox attached this is less than
one full output shaft rotation.

One reason to use CPR to define an encoder, rather than the commonly used PPR (Pulses per Revolution) is
when the encoder signal is decoded by the microcontroller it is possible to do 1x, 2x, or 4x decoding. For 1x

decoding the micro controller would only “count” the rising signal on a single channel, while for 4x decoding
each rising or falling edge for both channels is measured as a “count.” Although 4x decoding is one of the
most common methods, because it’s based on how the electronics decode the signal from the encoder, and
not on the encoder hardware itself, it’s not an ideal method of defining the encoder hardware specifications.

If we assume 4x decoding when each cycle is interpreted, the microcontroller can read the four distinct
outputs (a, b, c, and d) as individual steps. So for each CPR, the controller can read four counts/ticks. To
calculate the number of counts per rotation of the encoder shaft:

COUNTSPERROTATION oftheencodershaft) =(CPR(Cyclesperrotation) × 4

The actual cycles per rotation of the output shaft of the motor is depending on the gearbox that’s attached.

COUNTSPERROTATION oftheoutputshaft) =(CPR(Cyclesperrotation) × 4 ×Reduction

This can be calculated into the degrees per count. Assuming no additional reduction is added to the final
stage of the motor output (i.e. direct drive) the number of degrees per count is calculated as:

DEGREESPERCOUNT = 360°/COUNTSPERROTATION oftheoutputshaft)(

REV Motor Encoders

 REV Robotics HD Hex Motors (REV-41-1291) and the Core Hex Motors (REV-41-1300) come with a magnetic
quadrature encoder already installed and an appropriate cable for connecting the encoder output to the REV
Robotics Control Hub (REV-31-1595) or Expansion Hub (REV-31-1153). See Table 1 and Table 2 for relevant
encoder details.

Core Hex Motor (REV-41-1300) Encoder Specifications

Core Hex Motor (REV-41-1300) Reduction 72:1

Free Speed (RPM) 125

Cycles per Rotation of the Encoder Shaft 4 (1 Rise of Channel A)

Counts per Rotation of the Output Shaft 288 (72 Rises of Channel A)

 HD Hex Motor (REV-41-1291) Encoder Specifications

HD Hex Motor Reduction Bare Motor 40:1 20:1

Free Speed (RPM) 6000 150 300

Cycles per Rotation of the
Encoder Shaft

28 (7 Rises of
Channel A)

28 (7 Rises of Channel
A)

28 (7 Rises of Channel
A)

Counts per Rotation of the
Output Shaft

28 (7 Rises of
Channel A)

1120 (280 Rises of
Channel A)

560 (140 Rises of
Channel A)

https://www.revrobotics.com/rev-41-1301/
https://www.revrobotics.com/rev-41-1300/
https://www.revrobotics.com/rev-31-1595/
https://www.revrobotics.com/rev-31-1153/

Through Bore Encoder

The REV Through Bore Encoder (REV-11-1271) is specifically designed with the end user in mind, allowing
teams to place the sensor in the locations closest to the rotation that they wish to measure. This rotary
sensor measures both relative and absolute position through its ABI quadrature output and its absolute
position pulse output.

The FTC Control System (Control Hub and Expansion Hub) only supports incremental encoder
input through the motor encoder ports at this time. Absolute pulse input is not supported.

Included with the Through Bore Encoder is a 5mm Hex insert and a 4-Pin JST PH to 6-pin JST PH connector.
The 6-pin connector is plugged into the Through Bore Encoder with the 4-pin connector plugging into either
the Control Hub (REV-31-1595) and Expansion Hub (REV-31-1153) Encoder Port. Both the A and B channels
of the encoder are used.

When using the 5mm Hex insert, press the insert into the 1/2” Hex hole before attaching to a mechanism. If
you are having difficulty pressing the insert into the encoder, try flipping the insert over and press it in. There
is a slight taper in the insert, so it is recommended to press the insert with the smaller end first. When
removing, it is recommended to push the insert out in the reverse order (larger end first).

https://www.revrobotics.com/rev-11-1271/
https://www.revrobotics.com/rev-31-1595/
https://www.revrobotics.com/rev-31-1153/

Using 5V Sensors

The Control Hub (REV-31-1595) is a 3.3V logic level device, but many of the sensors that teams have
previously purchased through companies such as Modern Robotics are 5V logic level devices. Many of
these previously purchased sensors can be used with the new system by using a logic level converter. REV
Robotics offers a Logic Level Converter (REV-31-1389) and an optional Sensor Adapter Cable (REV-31-1384)
so teams can more easily use their legacy sensors with the REV Control System.

Logic Level Converter

The REV Robotics Logic Level Converter is a PCB which generates a 5V output from the 3.3V input and uses
a MOSFET on each signal line to create a bidirectional communication appropriate for a variety of digital
signals include I2C communication (Figure 5). For more information on how bidirectional level shifting
communication is accomplished, please reference the NXP Application Note AN10441.

https://www.revrobotics.com/rev-31-1595/
https://www.revrobotics.com/rev-31-1389/
https://www.revrobotics.com/rev-31-1384/
http://www.nxp.com/documents/application_note/AN10441.pdf

Connecting 5V Encoder

The Logic Level Converter (REV-31-1389) pin out directly matches the encoder cable pin out for FTC legal
motors. Encoder cables plug directly into the Logic Level Converter board and then the 4-pin JST PH Cable
(REV-31-1407), which is included with the Logic Level Converter, is plugged into the appropriate Control Hub
(REV-31-1595) Encoder Port. Motors which are terminated with Anderson Power Pole style connectors use
the JST VH to Anderson Power Pole Style (REV-31-1381) cable to connect to the motor output port on the
Control Hub.

All REV Robotics Motors work directly with the REV Control and Expansion Hubs. No Logic Level
Converter is needed for REV Motors.

https://www.revrobotics.com/rev-31-1389/
https://www.revrobotics.com/jst-ph-4-pin-sensor-cable-4-pack/
https://www.revrobotics.com/rev-31-1595/
https://www.revrobotics.com/rev-31-1381/

Connecting a 5V Sensor

A variety of 5v sensors are usable with the Control Hub (REV-31-1595) when used with a Logic Level
Converter (REV-31-1389). For some Modern Robotics I2C sensors a Logic Level Converter, and a change in
wiring to match the pin out of the Control Hub are needed. Teams can either purchase a Sensor Cable as an
add on to the Logic Level Converter Kit which will cross over the correct wires, or they can carefully rearrange
the pin order on the sensor cable. If using the Sensor Cable, connect the sensor to the Control Hub as shown
below. It is recommended to zip tie the connection between the sensor and the sensor cable to prevent
accidental disconnects. See the Sensor Compatibility Chart for more information on hardware required for
other sensors.

https://www.revrobotics.com/rev-31-1595/
https://www.revrobotics.com/rev-31-1389/

Sensor Compatibility Chart

To determine if your existing sensors can be used with the Control Hub (REV-31-1595), along with additional
hardware needed, see the table below.

Sensor Compatibility Table

Sensor Type Compatible Adapters Needed

Absolute Orientation IMU Fusion
Breakout - BNO055
2472
Adafruit

I2C Yes
3.3V Compatible
Custom Wiring Harness Needed

RGB Color Sensor with IR filter
and White LED - TCS34725
1334
AdaFruit

I2C Yes
3.3V Compatible
Custom Wiring Harness Needed

Color Sensor
45-2018
Modern Robotics

I2C Yes

Compass
45-2003
Modern Robotics

I2C Yes

Integrating Gyro
45-2005
Modern Robotics

I2C Yes

IR Locator 360
45-2009
Modern Robotics

I2C Yes

IR Seeker V3
45-2017
Modern Robotics

I2C Yes

Ranger Sensor
45-2008
Modern Robotics

I2C Yes

https://www.revrobotics.com/rev-31-1595/

NeveRest Motor
AM-3461, AM-3102, AM-2964a,
AM-3103, AM-3104
AndyMark

Quad
Encoder

Yes

HD Hex Motor
REV-41-1301
REV Robotics

Quad
Encoder

Yes
Directly Compatible
No Custom Adapters Needed

Core Hex Motor
REV-41-1301
REV Robotics

Quad
Encoder

Yes
Directly Compatible
No Custom Adapters Needed

12v 4mm Motor Kit
50-0119
MATRIX

Quad
Encoder

Yes

12v 6mm Motor Kit
50-0120
MATRIX

Quad
Encoder

Yes

Standard Motor Kit
50-0001
MATRIX

Quad
Encoder

Yes

Max Motor Shaft Encoder Kit
W38000
Tetrix

Quad
Encoder

Yes

Limit Switch
45-2401
Modern Robotics

Digital Yes
No Adapter Needed
Custom Wiring Harness Required.

Rate Gyro
45-2004
Modern Robotics

Analog No Not Officially Supported

Optical Distance Sensor
45-2006
Modern Robotics

Analog No Not Officially Supported

Touch Sensor
45-2007
Modern Robotics

Analog Yes
No Adapter Needed
Custom Wiring Harness Required

Light Sensor
45-2015
Modern Robotics

Analog No Not Officially Supported

Magnetic Sensor
45-2020
Modern Robotics

Analog No Not Officially Supported

